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ABSTRACT: The human brain is fundamentally a big data processor in terms of both image content and neural data. Yet, 
magnetoencephalography (MEG) neuroimaging studies are typically conducted with small numbers of visual stimuli, which may 
not support generalizations because they severely under-sample the stimulus space. This study analyzes available MEG data on 
human brain response across a large stimulus space spanning images of indoor and outdoor scenes, multiple objects, and singu-
lar objects. The images were divided into four categories: faces vs objects; large scenes vs small scenes; multiple objects vs single 
object; and moving (action) vs static. Time-resolved decoding was performed using a linear support vector machine classifier to 
estimate the time series with which categorical content emerges in the human brain. Decoding results were robust, reaching 100% 
accuracy as early as 100-130ms from the onset of the stimuli for all categories, excluding the action vs. static category that yielded 
relatively weaker decoding results. Overall, the results indicate that decoding several visual categorical representations with MEG 
data is possible even with very large numbers of diverse naturalistic image stimuli. The findings pave the way to future studies for 
exploring the critical dimensions of scene processing in the human brain.
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Introduction
The recognition of complex visual patterns emerges from 

neural activity in a distributed network of cortical regions. 
In studying the primary visual cortex, an important question 
in cognitive neuroscience arises: how does the brain manage 
complex tasks such as instantly recognizing and distinguishing 
a familiar object? In recent years, the field of neuroscience has 
been transforming: Multivariate Pattern Analysis (MVPA) 
tools are enabling technologies such as Magnetoencephalog-
raphy to decipher neural patterns and begin to formulate a 
comprehensive understanding of the complexity of the human 
brain. Previously, progress towards this goal has been hindered 
by the limitation of non-invasive brain imaging technologies 
and their inability to simultaneously decode temporal and spa-
tial information.1 

Unlike functional magnetic resonance imaging (fMRI), elec-
troencephalography (EEG), positron emission tomography 
(PET), and single-photon emission computed tomography 
(SPECT), magnetoencephalography (MEG) provides a di-
rect measure of brain function rather than functional measures 
and has very high temporal and spatial resolution. MEG is a 
non-invasive neurophysiological technique that measures the 
magnetic fields generated by neuronal activity of the brain. The 
nature of this technique means the source of an event can be 
localized with millimeter precision and the timing with milli-
second precision.2  

The introduction of multivariate decoding methods has 
made a significant impact on advancing cognitive neurosci-
ence. Multivariate pattern analysis of MEG data provides 
detailed insights into the temporal dynamics of neural activity, 
containing information about cognitive and sensory process-

es.1 This decoding of brain activity can help assess not only 
cognitive function but also provide a basis for comparing nor-
mal and abnormal function of the brain. These classification 
methods have been used to study simple visual features not 
limited to  complex visual patterns, and auditory functions of 
the brain.3 Further research into these methods could lead to 
a deeper understanding of the biological basis of several brain 
disorders and aid the development of imaging biomarkers 
leading to clinical treatments.

Decoding visual categorical information in MEG with high 
temporal and spatial information can provide insights into 
how categorical content emerges in the human brain, leading 
to a deeper understanding of temporal dynamics of cognitive 
representations. The scope of this study is to decode infor-
mation captured with MEG from evoked responses using a 
very large number of stimuli for brain activity over a period 
of time. Sample stimuli is shown in Figure 1. Associating and 
distinguishing the brain patterns based on the corresponding 
stimulus can help researchers determine if valuable informa-
tion on brain representations can be derived from the MEG 
neuroimaging data.4

To analyze the time course of brain processing for applied 
stimuli, multivariate pattern analysis was performed on the 
MEG data in a time-resolved manner. A strength in doing 
such time-series decoding is that the dynamic changes in brain 
patterns can be examined across multiple time points yielding 
a time series that accurately describes how the brain processes 
information. Figure 2 below depicts the multivariate pattern 
analysis pipeline.
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Figure 1. Sample images across multiple categories used as stimuli to evoke response 
and capture neural patterns.

Figure 2. Multivariate pattern analysis pipeline.

  Previous studies for analyzing MEG data for visual rec-
ognition have generally employed a small stimulus space.3 
This study is unique in its investigation of decoding across a 
large number of stimuli which de-emphasizes the impact of 
low-level image features, such as pixel intensity, pixel gradi-
ent orientation, and color, and puts more focus on high-level 
semantic image content such as objects and actions in order 
to deepen our understanding of information processing for se-
mantic visual recognition.

� Results and Discussion
   This study explored the spatio-temporal dynamics of cog-
nitive processes using a large stimulus space. The stimuli 
represented a set of 4,916 unique images, which were divided 
into eight subcategories: faces (438 images), objects (547 im-
ages), multiple (874 images), single (907 images), moving (669 
images), static (622 images), large scenes (1004 images), and 
small scenes (944 images). The data was recorded using MEG 
and was analyzed using multivariate pattern classification 
methods (time-resolved decoding using a linear support vector 
machine classifier). The use of 306 MEG sensors allowed for 
both millisecond and millimeter precision in analyzing how 
categorical content emerges in the human brain.
   Data was recorded from -200 ms to +700 ms after stimulus 
onset. At each time point (tx), a linear SVM classifier was used 
for decoding each of the four categories (faces vs objects, mul-
tiple vs single images, moving vs static images, and large scenes 
vs small scenes). Figure 3 shows the time series representation 
of neural pattern evolution in the brain. Figure 4 highlights the 
difference in brain response to different stimuli on a time scale.

Figure 3. Time series representation of neural pattern evolution.

Figure 4. Difference in time series of evoked responses.

  As shown in Figure 5, decoding results were robust; they 
reached 100% accuracy as early as 100-150ms from the onset 
of the stimuli for all categories, excluding the moving vs. static 
images category. Decoding time series for faces vs objects fluc-
tuated between 80% and 95% after stimulus onset until +150 
ms, thereafter remaining at 100% for an extended period of 
time until after +700 ms. Decoding time series for multiple vs 
single reached 100% decoding accuracy as early as +105 ms, 
with little fluctuation until +700 ms after stimulus onset. Large 
scenes vs small scenes similarly achieved 100% decoding accu-
racy as early as +105 ms, however there was marginally greater 
fluctuation between 90% and 100% accuracy until +250 ms, 
subsequently remaining at ~100% accuracy. The moving vs 
static image category, which yielded relatively weaker decod-
ing results, had a decoding accuracy varying between 78% and 
100% (78% at +150 ms) from +100 ms until +700 ms after 
stimulus onset. This was to be expected because of the simi-
larities between a “static” image and a “moving” image which 
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captures a moment of action. In comparison, the other three 
categories had far more defined boundaries differentiating 
them from one another.

� Conclusion
   Using the linear support vector machine classifier, we were 
able to decode the MEG sensor data which is critical in un-
derstanding how brain response varies across different image 
stimuli. Successfully using this classifier to identify these re-
sponses opens up the opportunity to apply this research to 
auditory, olfactory, tactile, and gustatory stimuli. The research 
shows us that MEG data can effectively capture subtle vari-
ations in brain response with both high spatial and temporal 
resolution. By leveraging the classifier, we will be able to de-
rive meaningful outcomes from the MEG data to advance our 
knowledge of information processing in the human brain. 
     There are multiple opportunities to enhance the study further, 
such as extending the work to include temporal generalization. 
Temporal generalization of decoding analysis enables us to dis-
tinguish transient brain patterns from persistent brain patterns. 
The decoding procedure is very similar to the one used in this 
study; however, one could train the SVM classifier at a given 

time point and test it across all other time points rather than 
the given time point. If the brain pattern representations are 
consistent over time, it implies that for a given stimulus, the 
neural activity is similar over that time interval. Similarly, this 
approach can also be used to test cognitive models which can 
help us understand the association of brain response between 
two completely different stimuli, where the SVM classifier is 
trained on one stimulus (ex. faces) but tested on different stim-
uli (ex. objects).
    It must be noted that decoding can only confirm that a 
neural pattern corresponds to a given stimuli and therefore 
contains “some” information but does not prove this infor-
mation is used by the brain. One approach to determine the 
functional relevance of decoding results would be to analyze 
the brain patterns triggered from a behavioral response, for 
example, correlating the decoding accuracy with reaction time 
(ex. pressing a button).

� Methods
  The study utilized the raw MEG data originally collect-

ed across ten sessions based on a large stimulus set.⁵ The data 
was made available for this research. The dataset consisted of 
brain response to 4,916 unique images which were separat-
ed into eight different subcategories: faces, objects, multiple, 
single, moving (action), static, large scenes, and small scenes. 
The categorized data was analyzed using Brainstorm, an open-
source software dedicated to MEG and EEG data analysis, 
written in primarily Matlab scripts.6 For every category of data, 
an arithmetic average was calculated, resulting in an average 
time series, Dynamic Statistical Parametric Map  (dSPM), and 
MEG topography. The difference between the average time se-
ries for each of the four categories, resulted in a new time series 
showing variation in signals between subcategories. 
     Next, decoding was performed using a linear Support Vector 
Machine  (SVM) classifier. At time tx, using k-fold cross-vali-
dation (Figure 6), the data was divided (ex. Faces and Objects) 
five-fold (subsets) to be used for classification, where each of 
the five subsets consisted of two 306 pattern vectors: one of 
faces and one of objects. Each set contained a proportionate 
number of face and object stimuli (one-fifth of the total faces 
and one-fifth of the total objects). Four of the subsets were 
used for the training set and the remaining subset as the testing 
set. 
      The process  was repeated fifty times for the same tX, cre-
ating a new set of folds for each permutation, where t ranged 
from -200 ms to 700 ms, in increments of 1 ms. By averaging 
the results of fifty trials (testing sets) at each time tx, a decod-
ing matrix was created resulting in the decoding time series 
(decoding accuracy vs time) for faces vs objects. This process 
was repeated for the remaining three categories: multiple vs 
single, moving vs static, and large scenes vs small scenes.

Figure 5. Multivariate classifier decoding accuracy.
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Figure 6. K-fold cross-validation procedure.
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