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ABSTRACT: Alzheimer’s disease is a progressive disease-causing deterioration of neurons in the brain, leading to dementia and 
eventually death. Diagnosis of Alzheimer’s conventionally consists of a combination of neuropsychological tests and laboratory 
tests, and clinical diagnosis accuracy lies at around 77%, As Alzheimer’s is associated with loss in brain mass, which can be 
discerned from MRI scans, it is a suitable task for deep learning and computer vision. An accurate and efficient machine learning 
model could be of great assistance to physicians as it could reinforce their diagnoses. However, deep learning typically requires large 
amounts of data, and medical data is often scarce. A recent breakthrough in machine learning, the generative adversarial network 
(GAN), allows for generation of realistic images, providing a potential solution to the lack of data. In this study, I constructed 
ResNet50-based convolutional neural networks to perform Alzheimer’s disease classification using MRI scans, achieving an 
F-1 score of 89%. Furthermore, by generating samples using CycleGAN, I demonstrated that GANs can significantly improve
classification accuracy when used for data augmentation, achieving an F-1 score of 95%.
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� Introduction
Background:
Alzheimer’s disease (AD) is a progressive disease character-

ized by the loss of cognitive ability and  is the sixth leading 
cause of death in the United States. The progression can be 
categorized by severity, consisting of mild, moderate, and severe 
AD. These stages are typically classified and diagnosed based 
on a variety of factors, including cognitive tests, interviews with 
family members, and laboratory tests. Early diagnosis of AD is 
critical, as it can greatly improve patients’ quality of life and in 
some cases halt or slow the rate of progression. According to a 
study conducted by Beach et. al. in 2012, there was wide vari-
ation in AD diagnosis accuracy, but the overall accuracy was 
77%.¹ This is far from perfect, as many AD cases are misdi-
agnosed, with a low true negative rate. This raises the demand 
for a computer assisted tool to reinforce physicians’ diagnoses.

As AD causes the breakdown and death of neurons, these 
changes in brain mass can be observed through technology 
such as magnetic resonance imaging (MRI), computerized 
tomography (CT), and positron emission tomography (PET). 
These scans are suitable for computer vision and deep learn-
ing algorithms, particularly in image classification. Recent 
advancements in machine learning, such as the convolutional 
neural network (CNN), have achieved results in classification 
that outperform humans in some cases.² Diagnosis of AD 
using machine learning can serve as a powerful tool for physi-
cians, supplying an additional metric for diagnosis.

Convolutional neural networks typically require large data-
sets to perform effectively. However, medical data is often 
scarce and limited in size. This is largely due to the high stan-
dards of consistency and organization required for medical 
data, and the cost and time required for data collection. For 
example, the ADNI dataset, one of the largest datasets created 
for Alzheimer’s disease neuroimaging, only consisted of 800 

individuals. As a result, the lack of data in medical imaging is 
a prominent obstacle preventing more widespread use of ma-
chine learning.

This raises a demand for data augmentation techniques to 
improve medical machine learning models. One recently intro-
duced technique is the generative adversarial network (GAN), 
one of the most influential milestones in machine learning.³ By 
having two neural networks, a generator, and a discriminator, 
compete against each other, GANs achieve promising results 
in image generation, super resolution, and data augmentation, 
among many other applications. 

The lack of large amounts of medical data leads to signif-
icant potential for the use of GANs for data augmentation. 
Using a relatively small dataset, GANs can generate similar 
but original images, as opposed to image modifications used 
in classical data augmentation. In this study, I investigate the 
potential for using deep learning in Alzheimer’s disease clas-
sification by creating a convolutional neural network model. I 
also test the feasibility of using GANs for data augmentation, 
specifically using the CycleGAN architecture.
� Literature Review
Convolutional Neural Networks:
A convolutional neural network (CNN) is a type of neural 

network that specializes in dealing with pattern recognition 
in images. Input usually consists of a three-dimensional array 
containing width, height, and the pixel values in the image. A 
diagram of the architecture of a convolutional neural network 
is shown in Figure 1.

CNNs use layers of convolutions, where a filter or kernel is 
used to create a feature map, allowing the network to sample 
context within each frame as neighboring pixels are included. 
These feature maps allow the model to detect low level features 
within regions. Pooling layers are also added, which create sub-
samples of the previous layer. In classification tasks, a standard 
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fully connected feed forward neural network is commonly 
applied to the flattened final feature map output by the con-
volutional layers.

Transfer Learning:
A common method of training image classification networks 

is through transfer learning, which is the process of using 
pretrained models to operate on a different task, essentially 
transferring the knowledge stored in the original network. 
Common pretrained models include VGG, Inception, or 
ResNet, all of which have performed well on datasets such 
as ImageNet.⁵ Transfer learning can often allow for quicker 
training times along with high accuracy and is also less prone 
to overfitting.

Generative Adversarial Networks:
Generative adversarial networks were first proposed in 2014 

by Ian Goodfellow.⁶ The paper suggests the simultaneous 
training of two adversarial networks in the style of a zero-sum 
minimax game. The goal of the generator is to create images 
that trick the discriminator into classifying them as real and 
does so by taking in random noise and up sampling it through 
convolutional layers. In contrast, the goal of the discriminator 
is to correctly classify what is fake data from the generator and 
what is real data from the training set. This is also usually done
through a convolutional neural network, returning a probability 
that the image is real.

Loss = Ex[log(D(x))] + Ez[log(1 − D(G(z)))] 
The discriminator attempts to maximize D(x), which is the 

likelihood of a correct sample being classified correctly. The 
generator wants D(G(z)), the likelihood of the discriminator 
classifying its generated image as real, to be as high as possible, 
and thus wants to minimize 1-D(G(z)). This means that 
the desired G will be minimized, and the desired D will be 
maximized. During each training iteration, the discriminator 
is updated through gradient ascent in order to maximize the 
loss function, and the generator is then updated through 
gradient descent. 

CycleGAN:
Zhu et al. proposed a cycle consistent GAN network that 

allows for unpaired image to image translation.⁷

Consisting of two generators and two discriminators, Cycle-
GAN allows for discriminatory verification in both directions. 
Standard GAN loss is used to determine the realistic-ness of 
the generated images by comparing the generated image with 
a real image in the other domain. To ensure that the trans-
formations are cycle consistent, cycle consistency loss is also 
introduced. When an image is passed through both generators, 
the resulting image is compared with the original image, as 
shown in Figure 4. Using the loss functions together essential-
ly allows the generators to learn a spatial transformation from 
one class to the other.

The generators G and F learn the spatial mappings from X 
to Y and vice versa, and are verified by discriminators Dy and 
Dx. CycleGAN has been applied to topics such as style trans-
fer and object transfiguration and produces impressive realistic 
results.

Data Augmentation:
As stated before, GANs have great potential in data 

augmentation. Traditional data warping augmentation consists 
of techniques such as geometric transformations, filters, and 
random erasing.¹⁰ This can reduce overfitting and improve 
accuracy. In contrast, GANs are a method of oversampling, 
as they are able to extrapolate beyond the training set to 
generate synthetic data, rather than solely modifying existing 
data within the training set. This is substantially useful in 
fields lacking large amounts of data, such  as in medicine. 
One instance of GANs being used in augmentation is a study 
conducted by Frid-Adar et al. proposing the use of synthetic 
images in liver lesion classification.¹¹ GAN generated data was 
used with a CNN for image classification on a dataset of size 
182. Standard DA techniques resulted in 78.6% sensitivity and 
88.4% specificity, while the addition of GAN synthesized data 
yielded 85.7% sensitivity and 92.4%.

Figure 1: CNN Architecture. Adapted from Buetti-Dinh et al.4 

Figure 2: The GAN uses the following loss function, where x represents 
real samples and z represents generated samples. 

Figure 3: CycleGAN architecture. Adapted from Goodfellow et al.8 

Figure 4: CycleGAN Loss. Adapted from Hosseini-Asl.9 
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from using different model architectures and displays the sig-
nificance of using GAN augmentation. Section 4 and 5 report 
conclusions and future work respectively.
�   Methodology
Figure 5 outlines the model pipeline, consisting of dataset 

acquisition, preprocessing (including GAN augmentation), 
and classification using a CNN.

Data Acquisition:
Data used in the preparation of this article were obtained 

from the Institute for Information & Communications Tech-
nology Promotion (IITP) database. The primary goal of ADNI 
has been to test whether serial magnetic resonance imaging 
(MRI), positron emission tomography (PET), other biolog-
ical markers, and clinical and neuropsychological assessment 
can be combined to measure the progression of mild cognitive 
impairment (MCI) and early Alzheimer’s disease (AD). The 
specific dataset used for training was the ADNI1 standardized 
MRI dataset, categorized by severity: AD, MCI, and normal 
cognition (NC). For the purposes of this study, I trained a net-
work to classify between AD and NC. The dataset contained 
705 samples labeled as NC and 476 samples labeled as AD.

Data Preprocessing:
The data was stored in NIFTI files, which were converted 

into three dimensional NumPy arrays using nibabel. A csv file 
containing information about the scans, patients, and ground 
truth diagnosis labels was also downloaded from the ADNI 
database. As the NIFTI image data is three-dimensional, 
slicing was required to prepare samples for training. To capture 
as much information from the original image, I extract three 
slices, one each from the axial, coronal, and sagittal orientations. 
The slices are taken by retrieving the midpoint of each axis 
length and were resized to 224 x 224.

Two different methods of preprocessing were considered 
and tested:

Skull stripping was applied, which is the process of removing 
the skull from the MRI images. This isolates the brain tissue, 
allowing for more consistency among samples. This was done 
using the Extractor function from the deep brain library.

RAS + ISO transforms, and histogram normalization were 
performed using the TorchIO library.¹⁹ These transforms 
change the orientation of the MRI image to also improve 
consistency.

GAN based Data Augmentation:
I constructed the CycleGAN models using the implementa-

tion from.⁷ The model architecture is shown in Figure 6. 
The model consists of two generators, where one is trained 

to convert NC samples to AD samples and the other is trained 
to convert AD samples to NC samples. During training, a real 
NC image is passed through the first generator, and the result-
ing fake AD image is compared with a separate real AD 

Alzheimer’s and Machine Learning:
As MRI scans are an important aspect of the diagnosis 

of Alzheimer’s, there exists substantial literature regarding 
machine learning methods. The most common model is a 
convolutional neural network, as they are ideal for image pro-
cessing. Farooq et al. used a four-way CNN classifier between 
the following classes: normal cognition (NC), early mild cog-
nitive impairment (MCI), late mild cognitive impairment, and 
Alzheimer’s disease (AD).¹² The model was trained on the 
Alzheimer’s disease Neuroimaging Initiative (ADNI) dataset. 
The only data augmentation performed was flipping images 
due to the symmetrical nature of MRIs, and specific slices 
were selected to exclude those without gray matter informa-
tion. The proposed network based on GoogLeNet and ResNet 
outperformed other studies done on the same dataset, with  
about 98% accuracy. Hosseini-Asl et al. used a deeply adap-
tive 3D convolutional neural network (DSA 3D-CNN) on 
the CADDementia dataset, which could then be generalized 
to the ADNI dataset, which they used for validation.¹³ The 
model achieved a 94.8% accuracy in task specific classification. 
Glotzman et al. proposed a network of 2D CNNs, applied to 
three images extracted from each sample in the ADNI data-
set.¹⁴ This allowed for the use of two dimensional CNNs on 
a three-dimensional dataset while preserving features. Both 
MRI scans and PET scans were used, and both two-way clas-
sification (NC vs AD) and three-way classification (NC vs 
MCI vs AD) were tested. Two-way classification with PET-
AV 45 scans performed the best, with 83% accuracy.

There have been relatively few applications of generative 
adversarial networks in classifying AD. A study by Bowles et 
al. used GANs to model the progression of the disease using 
MRI data.¹⁵ Using image arithmetic, the model could predict 
changes in the brain over time and results were comparable 
to longitudinal examination data. Another study conducted 
by Pan et al. used GANs to synthesize PET scans from MRI 
scans in order to fill in gaps in data as many AD patients do 
not have both due to the high cost of PET scans.¹⁶ A cycle 
consistent generative adversarial network was used as the first 
step, which was used in order to learn mappings between the 
two image domains. The features are then fed into a landmark 
based multimodal multi-instance learning classifier for diag-
nosis. Kim et al. conducted a feasibility study on using GANs 
for slice selective learning on PET scans.¹⁷ Using a BEGAN, 
they showed that double slices over the posterior cingulate 
cortex achieves the best performance, and that two slices per-
formed significantly better than using one slice.

It is also important to consider the practical applications of 
machine learning in AD diagnosis. A survey conducted by R. 
Bryan on applying machine learning to AD diagnosis notes 
that machine learning models are biased by the original popu-
lation, as it is limited to the dataset that it was trained upon.¹⁸ 
The overall conclusion reached was that although it is unlikely 
that machine learning models can replace the skills of radiol-
ogists, they can serve as useful tools to complement human 
skills.

The remainder of this paper is organized as follows. Section 
2 describes the methodology and pipeline for model construc-
tion. Section 3 presents and discusses the results obtained 

Figure 5: Overview of the model pipeline.
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image through the discriminator, computing GAN loss. The 
loss equation, as displayed in equation (1), is the same as the 
one proposed in the original GAN paper.³ G represents the 
generator, DY represents the discriminator for AD samples, x 
represents a real NC image, and y represents a real AD image.
(1)   

LGAN(G,DY,X,Y)=Ey∼pdata(y)[logDY(y)]+Ex∼pdata(x)[log(1−
DY (G(x)))

This process is repeated, starting with a real AD image, 
resulting in another GAN loss, represented in equation (2) F 
represents the generator, Dx represents the discriminator for 
NC samples, x represents a real NC image, and y represents a 
real AD image.
(2)

LGAN(G,Dx,X,Y)=Ex∼pdata(x)[logDx(x)]+Ey∼pdata(x)[log(1−
Dx (F(y)))

The fake images are also passed through the second generator, 
returning a reconstructed version of the original image. Cycle 
consistency loss is computed by summing the losses from 
comparing the original NC image x with its reconstructed 
image F(G(x)) and comparing the original AD image y its 
reconstructed image G(F(y)). This is represented in equation 
(3), adapted from.⁷
(3)

Lcys(G,F)=Ex∼pdata(x)[||F(G(x)−x||1]+Ey∼pdata(y)[||G(F(y) 
−y||1]

The overall loss function incorporates both GAN losses and 
the cycle consistency loss and is represented in equation (4). λ 
is a constant representing how much weight is placed on the 
cycle consistency loss, and λ= 10 is used. The objective of this 
loss function is to minimize G and F , which represent loss for 
the two generators, and maximize Dx and Dy, which are the 
two discriminators.
(4)

L(G,F ,Dx,Dy)=LGAN(G,DY,X,Y)+LGAN(F ,Dx,Y,X)+ 
λLcys(G,F)

The generator is based on the ResNet architecture, and 
consists of down sampling,⁹ residual blocks, and up sampling. 
Instance normalization and reflection padding is used as 
described in.⁷ The tanh activation function is used in its last 
layer to scale the output image between -1 and 1. The generator 
architecture is shown in Figure 7.

The discriminator is a CNN using PatchGANs, which 
classify whether an image is real, or fake based on patches. This 
decreases the number of parameters needed and is effective for 
images with high resolutions. The model also uses LeakyReLU 

Figure 6: CycleGAN Architecture.

as its activation function and utilizes instance normalization. 
The discriminator architecture is shown in Figure 8.

The original dataset was split according to the label and 
randomly paired. Three individual Cycle- GAN models were 
created, where each one was trained on data from a different 
MRI slice. Each model used the Adam optimizer with a 
learning rate of 2e-4 and were trained for 100 epochs with a 
batch size of 1, as specified in the CycleGAN paper.

The trained model was used to generate sufficient samples to 
create a balanced dataset. An AD version of each NC sample 
was generated and vice versa. A total of 705 AD samples and 
476 NC samples of each orientation were generated, for a total 
of 1181 images of each class, as shown in Table 1.

Convolutional Neural Network Classifier:
I used a transfer learning approach to create the model 

architecture as it would save training time and is generally 
effective when datasets are small. I used the ResNet50 
convolutional neural network (CNN) as our pretrained model, 
as shown in Figure 9.

The pretrained ResNet50 architecture takes in 3-channel 
RGB images while the MRI scans are grayscale. To match the 
network, the one channel images were transformed to three 
channels by stacking the tensor three times across dimension 

Figure 7: CycleGAN Generator Architecture.

Figure 8: CycleGAN Discriminator Architecture.

Table 1: Dataset sizes after GAN augmentation.

Figure 9: ResNet50 Architecture. Adapted from.20
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0. The last layer was also modified to become a binary 
classifier. I used a modified CNN with multiple inputs in order 
to better encapsulate volumetric data. The model architecture 
consists of three ResNet50 CNN models, where outputs from 
each individual CNN are concatenated and passed through 
fully connected layers, which returns the diagnosis group. The 
model architecture is shown in Figure 10.

The neural network was fine-tuned using the Adam optimizer 
with a learning rate of 1 e-4 and trained for 50 epochs with 
a batch size of 32. A training, validation, and testing split of 
80%-10%-10% was used.

Model Evaluation:

�   Results and Discussion
Comparison of Preprocessing Methods:
Two methods of preprocessing were tested, skull stripping 

and TorchIO transforms. Figure 11 displays the resulting 
images after applying preprocessing.

Table 2 compares the results from applying different meth-
ods of preprocessing on the three input ResNet50 networks as 
shown in Figure 6. The different transforms were not compati-
ble with each other, so results were obtained separately.

The model utilizing TorchIO transforms improved upon 
the unmodified model, increasing the F1 score from 86.3% 
to 87.5%. However, the model utilizing skull stripping out-
performed both models. This is likely because it improves the 
consistency among samples in the dataset, which makes it eas-
ier for the model to extract important features. The model with 
skull stripping was kept for the remainder of the study.

CycleGAN Generation Results:
Examples of CycleGAN generated images are shown in 

Figure 12.

By observation, the synthesized Alzheimer’s sample displays 
more dark space throughout the brain when compared to the 
normal sample that it was transformed from, which is an indi-
cation of loss of brain mass and a characteristic of Alzheimer’s 
disease. On the contrary, the synthesized normal sample on the 
bottom right has much less dark space. While the quality of 
our synthetic images has not been verified by experts, they ex-
hibit many characteristics of real MRI images.

Comparison with GAN Augmentation:
When using CycleGAN for augmentation, an additional 

705 AD samples and 476 NC samples of each orientation 
were generated, for a total of 1181 images of each class. Table 
3 shows that there was a substantial increase in performance to 
the CNN model when GAN augmentation is applied. The F1 
score for the ResNet50 model increased from 0.863 to 0.946, 
an 9.6% increase. The F1 score for the ResNet50 using skull 
stripping increased from 0.891 to 0.951, an 6.7% increase.

These results indicate that the addition of CycleGAN 
improves CNN classification performance. From this, it is rea-
sonable to infer that the synthesized images had meaningful 
features that benefited the model.The increased size and bal-
ance among classes in the CycleGAN augmented dataset are 
also factors that are potentially responsible for the increase in 

Figure 10: Proposed Multiple CNN architecture.

Figure 11: Normal sample (left) and Alzheimer’s sample (right). The 
original slices are displayed in the first column, the skull stripped samples are 
displayed in the second, and the TorchIO transformed samples are displayed 
in the third.

Table 2: Comparison of ResNet50 networks with different preprocessing.

Figure 12: CycleGAN image synthesis.

Table 3: Comparison of CNN models with GAN augmentation.
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performance. Overall, these results demonstrate the effective-
ness of GANs in data augmentation.

�   Conclusion
In this study, I constructed convolutional neural network 

models utilizing the ResNet50 architecture to diagnose 
Alzheimer’s disease using MRI scans, with variants using 
one input and three inputs. I also address the problem of size 
limitations in medical datasets with the use of generative 
adversarial networks (GANs). Using the ADNI1 dataset, I 
demonstrated that the addition of GANs can greatly improve 
deep learning classification accuracy for Alzheimer’s disease 
diagnosis. Specifically, I used CycleGAN to generate images of 
one class using the other, balancing the dataset and increasing 
its overall size. Our results show that classification accuracy 
improved substantially, with F1 scores increasing from 0.863 
to 0.946 for the standard model and 0.891 to 0.951 for the 
model utilizing skull stripping. Due to the lack of large datasets 
in many medical fields, the results obtained in this study can 
be generalized to many other fields as well. Overall, with 
promising results in data augmentation, GANs have potential 
to significantly improve upon classification tasks across a wide 
variety of applications.

Future Work:
a. Processing:
Upon inspection, the current methods of preprocessing 

yield some inconsistency between images, particularly in axial 
scans, due to subjects having slight variation in brain shape. 
In the future, other methods of preprocessing could be used 
to improve consistency across each slice taken. Software such 
as statistical parametric mapping could also be applied to 
perform preprocessing such as gray matter segmentation and 
modulation to reduce variation between images.

b. Intermediate Stages:
The current model serves to classify between MRI scans that 

either have or don’t have Alzheimer’s disease. The intermediate 
stage, mild cognitive impairment (MCI), could also be 
incorporated into the classifier. Augmented CycleGAN could 
be implemented to generate images of all three classes.

c. MRI and PET Fusion:
Diagnosis of Alzheimer’s Disease often uses both MRI 

scans and PET scans. In contrast to MRIs, which provide 
identification of abnormalities in the brain, PET scans can 
show areas of low metabolism, allowing for differentiation 
between Alzheimer’s and other types of dementia. Using a 
fused image with both scans in conjunction would contain 
more features and will likely improve classification accuracy.

d. External features:
A full Alzheimer’s disease diagnosis requires many elements 

other than neuroimaging, such as mental status tests and 
physical exams. Incorporating all of these elements would 
greatly improve the accuracy of a machine learning system.
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