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ABSTRACT: The development of advanced predictive models can help ensure safe and efficient operations within the complex 
area of the air traffic domain. Accurate 4-dimensional (latitude, longitude, altitude, and time) trajectory prediction plays a crucial 
role in enhancing the safety and efficiency of modern air traffic management systems. This study presents a comparative analysis of 
two trajectory prediction models, a linear regression model and a neural network, focusing on their ability to accurately predict the 
position of an aircraft given factors such as latitude, longitude, altitude, and time. Using data obtained from OpenSky, both models 
were evaluated for prediction accuracy on different error metrics like Euclidean error, MAE, MSE, RMSE, MAPE, and R2. Results 
from the study indicate that while the neural network model performed better on the Euclidean error, the linear model had lower 
scores on all the other error metrics. This underperformance may be attributed to inadequate feature engineering, overfitting, or 
insufficient hyperparameter tuning, and implementing techniques like hyperparameter tuning methods, regularization methods, 
or additional features could enhance the model’s accuracy. These findings provide critical insights into the strengths and limitations 
of each model and highlight the importance of balancing model complexity with performance requirements to refine predictive 
systems in next-generation ATM systems.
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�   Introduction
The need for accurate trajectory prediction models in civ-

il aviation is essential for improving flight safety, enhancing 
operational efficiency, and minimizing delays.1 As global air 
traffic continues to increase, precise models are required to 
optimize flight paths, allowing for the effective use of increas-
ingly congested airspace.2 One such advancement is the use of 
4D trajectory prediction, which not only accounts for latitude, 
longitude, and altitude but also incorporates time, making it 
superior to traditional 3D predictions, which generally include 
latitude, longitude, and altitude.3 In this context, latitude refers 
to the aircraft’s north-south position while longitude refers to 
its east-west position relative to the Earth’s equator, altitude 
measures the distance above a surface or sea level, and time 
tracks positional changes over a period.

The implementation of accurate trajectory prediction mod-
els can aid in making efficient use of limited airspace. This way, 
flights can follow the optimal flight paths while increasing the 
number of aircraft in an area, while the area is still safe. These 
optimal paths also reduce the time required for aircraft to reach 
their destinations while also ensuring the safety of the passen-
gers and the flight crew.2

Traditional trajectory prediction methods, such as Linear 
Regression, have been widely used for identifying linear rela-
tionships in flight data in small datasets.4 However, this model 
is not capable of predicting non-linear relationships often pres-
ent in aviation data, so it might underfit the data. This would 
lead to a lot of outliers, resulting in a higher residual error, 
which means the model would make inaccurate predictions.5

Artificial Intelligence and Machine Learning are promising 
alternatives to aid in trajectory prediction. AI models, especial-
ly neural networks, excel at identifying non-linear relationships 
in data.6 Neural networks have multiple layers with multiple 
nodes, and they produce an output through multiplication, 
summation, activation function application, and other such 
processes. These models can identify patterns in complex data 
that go unnoticed by simpler Regression models.7

This study addresses the following research question: How 
does a neural network-based AI model compare to traditional 
Linear Regression in predicting 4D aircraft trajectories in terms 
of accuracy and practical applicability for air traffic manage-
ment? This research aims to compare the predictive accuracy 
of a traditional Linear Regression model with that of a Neural 
Network model, evaluating how AI can improve 4D trajectory 
modeling in civil aviation. Key metrics for comparison include 
Euclidean Error, Mean Absolute Error (MAE), Mean Squared 
Error (MSE), Root Mean Squared Error (RMSE), Mean Ab-
solute Percentage Error (MAPE), and R-squared (R²) scores. 
The data used for this analysis was obtained from OpenSky, a 
free platform offering real-time aircraft position data (includ-
ing latitude, longitude, altitude, and time) collected through 
ADS-B transponders. The dataset includes variables such as 
call sign, origin country, time position, last contact, longitude, 
and latitude. For this study, the input variables were longitude, 
latitude, altitude, and time deltas. To compare the differences in 
models’ predictive accuracy, a Linear regression model was em-
ployed as the traditional model, and a Neural Network model 
with TensorFlow and TFlite was integrated as the AI model.
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This study contributes to civil aviation by emphasizing the 
benefits of comparing traditional and AI-based models for 
trajectory prediction and aims to provide insights into which 
methodologies best optimize flight paths and manage air traf-
fic, improving the overall efficiency of air traffic management 
systems. By addressing the limitations of traditional models 
and demonstrating how enhanced prediction models can 
streamline aviation systems, the research supports more effi-
cient use of airspace, reduces delays, and ensures safer skies for 
the future.

�   Background and Evolution of 4D
Trajectory Modeling
4D trajectory modeling, which refers to the management of 

aircraft positions in three dimensions, namely latitude, longi-
tude, and altitude, in addition to time, has evolved significantly 
over the years. This development is primarily driven by the 
rapid growth of the aviation industry and reduced flight in-
tervals, which prioritize the need to optimize routes for safety, 
efficiency, and environmental impact.

The initial efforts in trajectory prediction for civil aviation 
were grounded in basic physical models, such as kinematic 
equations of motion. These early models primarily used de-
terministic methods to predict future aircraft positions based 
on historical data.8 However, they were simplistic and did not 
account for various factors like weather, wind, or air traffic.

Research in 4D trajectory prediction began with relative-
ly simpler models. One of the first techniques that emerged 
for trajectory prediction was linear regression, where trajecto-
ry data for aircraft was fitted to a linear model. This allowed 
for simple predictions based on past observations or an easi-
ly recognizable pattern. However, this method's accuracy was 
limited due to its inability to identify complex patterns in non-
linear data, which meant it often underfitted the data and did 
not provide good predictions.8

Recently, with the development of the aviation industry, 
statistical models have become prominent. Among the most 
significant advancements was the introduction of the Kalman 
Filter in trajectory modeling.9 The Kalman filter is an algo-
rithm that can use data that is noisy or inaccurate and estimate 
an unknown variable with greater accuracy. Kalman filters sur-
passed linear regression in air trajectory prediction due to their 
ability to handle dynamic systems and uncertainties effective-
ly.10

As computing power grew in the 1990s, more sophisticated 
nonlinear models were introduced.11 Instead of merely pre-
dicting future positions, these models integrated the concept 
of 4D trajectory modeling, incorporating not only three spatial 
dimensions but also time. Methods such as the Extended Kal-
man Filters (EKF), Monte Carlo Simulations, and stochastic 
models gained popularity during this time in the air traffic 
management industry.12

Today, 4D trajectory modeling has become advanced. With 
the advancement of deterministic models, which provide a sin-
gle, concise prediction of an aircraft’s future trajectory based 
on initial data and well-defined equations of motion. Mod-

el Predictive Control (MPC), which predicts the future state 
of an aircraft based on data about its current state, is a great 
advancement in deterministic models because it continuously 
optimizes to surpass limitations like weather and air traffic.  
Advancements in deterministic kinematic models include 
more sophisticated aircraft dynamics and flight mechanics.

Research is increasingly focusing on models that can ad-
just predictions dynamically as real-time data, like weather 
updates or unexpected air traffic changes, becomes available, 
improving model responsiveness.13,14 Additionally, combining 
deterministic and probabilistic approaches, such as determin-
istic models enhanced with neural networks, is a growing area, 
as it can offer more reliable predictions by balancing precision 
with flexibility for handling unpredictable factors.15

Probabilistic models are statistical models that use un-
certainty as a factor in their predictions. By considering all 
the possibilities, these models can deal with otherwise un-
predictable changes like weather, air traffic congestion, and 
unexpected delays. Some examples of probabilistic models in-
clude Monte Carlo simulations and Bayesian networks.12 In 
Monte Carlo simulations, multiple trajectories are predicted 
when various factors like weather and wind speed are inputted 
into the model. Bayesian networks represent the relationships 
between different variables probabilistically, which is useful in 
incorporating both historical and real-time data.

Despite their statistical flexibility, traditional determinis-
tic and probabilistic models still struggle with the dynamic, 
nonlinear complexities of real-world aviation. Deterministic 
approaches rely on fixed equations, limiting their adaptabili-
ty to unforeseen disruptions like sudden weather shifts or air 
traffic congestion.13 Probabilistic methods, while accounting 
for uncertainty, often require extensive computational resourc-
es to scale effectively and may lack the granularity to capture 
intricate spatial-temporal patterns.12 These shortcomings 
highlight the need for more adaptive, data-driven solutions, 
prompting the exploration of AI-based techniques, which 
leverage machine learning to dynamically refine predictions 
using real-time data.

Traditional trajectory prediction models are useful in many 
situations, but also include a lot of limitations. These models 
are unable to handle relationships between non-linear data, like 
wind speed and turbulence.16 If they are asked to find patterns 
in complex, non-linear data, they would simplify the output 
and therefore underfit the data.  These models also have lim-
ited adaptability to constantly updating real-time data. These 
foundational models also perform poorly in complex or noisy 
data. They are not adapted to handle the complexity required 
for large-scale data.

Collectively, traditional trajectory prediction mod-
els—whether deterministic or probabilistic—face inherent 
constraints. Key limitations include reliance on simplified lin-
ear assumptions, leading to underfitting in nonlinear scenarios; 
poor scalability with high-dimensional, noisy data; and static 
architectures unable to assimilate real-time updates efficient-
ly. These gaps necessitate a paradigm shift toward AI-driven 
models capable of learning complex patterns autonomously 
and adjusting predictions dynamically.
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Neural networks, particularly deep learning architectures, 
have shown promising results in predicting 4D trajectories. 
One of the most common architectures for 4D trajectory 
prediction is the Long-Term short-memory network. LTSM 
networks are a type of recurrent neural network (RNN) that 
excels in mastering long-term dependencies.17 LTSMs contain 
a memory cell that can hold information for a long period of 
time. LTSMs can also decide what information to include and 
what to remove. LTSMs are effective at learning from histori-
cal trajectory data and predicting future positions in both space 
and time, and this makes them ideal predictors of the aircraft’s 
future trajectory. Graph Neural Networks (GNNs) are an 
emerging architecture for aviation trajectory prediction, espe-
cially in multi-aircraft scenarios. GNNs contain data points 
called nodes, which are linked by lines called edges. GNNs 
model the interactions between different aircraft as nodes in a 
graph, with edges representing potential interactions (such as 
proximity with other aircraft or potential conflicts).

This progression from traditional deterministic models to 
AI-driven 4D trajectory modeling reflects the industry's shift 
toward more adaptive and predictive solutions that are capable 
of addressing the complexities of modern aviation. By incor-
porating real-time data and handling nonlinear interactions, 
AI models offer unprecedented accuracy and flexibility that 
traditional models cannot achieve, setting a new standard in 
trajectory prediction.8,18

The advancements in trajectory modeling, from determinis-
tic methods to AI-driven techniques, demonstrate the aviation 
industry's commitment to addressing the complexities of 
modern air traffic management. While traditional models like 
linear regression have laid the foundation for trajectory predic-
tion, their limitations in handling nonlinear and dynamic data 
necessitate the exploration of more sophisticated approaches. 
This motivates this research to investigate how integrating a 
neural network-based AI model can improve the accuracy and 
efficiency of 4D trajectory predictions compared to tradition-
al methods. The following sections outline the methodology, 
including data collection and modeling approaches, that un-
derpin this comparative analysis.

�   Methodology
Data Collection and Description:
The dataset used for this research was obtained from Open-

Sky, a free receiver network that contains credible aircraft 
information received through ADS-B transponders. The at-
tributes extracted from the dataset include Callsign, Origin 
country, time position, last contact, latitude, longitude, and 
altitude. As 4D trajectory prediction involves latitude, longi-
tude, altitude, and time, the corresponding attributes will be 
significant to the research. In aviation, a callsign is a unique 
identifier that consists of the aircraft’s name along with a 
combination of unique numbers or letters. This is used to dis-
tinguish an aircraft during communication with the control 
center or other aircraft, which avoids confusion when multi-
ple aircraft are in the same space. These attributes contribute 
to accurate tracking of the aircraft’s position, enabling precise 
trajectory prediction. For this research, the callsign will be used 

to distinguish the aircraft, which is critical in predicting its 
trajectory.  Additionally, attributes like origin, country, and last 
contact also help identify a particular aircraft and distinguish 
it from others.

Model Selection:
To address the need for accurate trajectory prediction, 

two modeling approaches were introduced: a traditional lin-
ear regression model and a neural network-based AI model. 
Each approach offers unique strengths and leverages differ-
ent aspects of the data. The linear regression model provides 
a straightforward approach to understanding simpler relation-
ships among variables, while the AI model can handle the 
non-linear complexities in location data, which may enhance 
flexibility and prediction accuracy for real-time predictions.

Linear regression attempts to predict the relationship be-
tween an independent variable (Time delta, Latitude delta, 
and Longitude delta) and the target variables (Latitude and 
Longitude), assuming a linear relationship between these 
variables. This model also assumes constant variance, indepen-
dence of errors, no multicollinearity, and performance.

The AI model’s hyperparameters (e.g., layer size, activa-
tion functions, epochs) were selected based on empirical best 
practices for trajectory prediction tasks, balancing computa-
tional efficiency and predictive performance. While systematic 
hyperparameter optimization techniques like grid search or 
cross-validation were not employed due to resource constraints, 
key design choices were validated through iterative testing.

The AI model consists of an input layer, two hidden layers 
with 64 nodes and ReLU activation functions, and an output 
layer with two nodes to predict latitude and longitude. ReLU 
(Rectified Linear Unit) is used in the hidden layers because 
it is able to handle nonlinear data effectively, and the output 
layer remains linear to directly predict latitude and longi-
tude. The model utilizes 64 nodes in each layer to achieve a 
balanced learning capacity without overfitting the data. The 
output layer contains two nodes corresponding to the latitude 
and longitude predictions. TensorFlow was chosen for train-
ing because of its ability to execute various tasks across many 
platforms and its general performance with neural networks 
after training. The model was converted to TensorFlow Lite 
(TFLite) for its compactness, efficiency, and ability to deploy 
the model on mobile or embedded systems, which allows for 
faster prediction time, ideal for real-time trajectory prediction.

For model training and evaluation, the training dataset is 
split into 80% training and 20% testing for both models using 
TrainTestSplit. 10% of the training data is further split to be 
used as validation data during neural network training to mon-
itor and reduce overfitting. For the neural network, a default 
batch size was assigned following the framework’s optimal 
settings for efficiency. However, adjustments can be made de-
pending on hardware and computational power. The neural 
network is trained for 10 epochs, balancing training time with 
achieving sufficient accuracy in learning trajectory patterns.
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give extreme values when actual values are close to zero. It is 
also easily interpretable as a percentage. The formula that can 
be used to derive MAPE is:

Equation (5)

R-squared (R²) indicates the proportion of variance in the 
data explained by the model. Its values range from 0 to 1. 
Higher R² values show that the model explains more of the 
observed data variance, which is especially useful for assessing 
linear models' effectiveness. Negative values can occur if the 
model performs worse than a simple baseline model. R-squared 
can be represented as:

Equation (6)

Where ȳ is the mean of the actual values

Experimental Setup:
This project utilizes Python for implementation, with li-

braries including TensorFlow, TFLite, and Scikit-Learn. 
TensorFlow is used to build, train, and convert the model into a 
TFLite model for efficiency, and Scikit-Learn, which contains 
modules like StandardScaler and TrainTestSplit, is used for 
linear regression and data scaling. The TensorFlow model was 
initially trained in a typical Python runtime environment com-
patible with TensorFlow 2.x. The TFLite runtime interpreter is 
lightweight, making it suitable for resource-constrained envi-
ronments, ensuring efficient model predictions even for systems 
with limited computational power, such as the home PC used 
to implement the model for this research. An 80/20 train-test 
split is applied, with 80% of the data used for model training 
and 20% for final evaluation to assess the model’s overall per-
formance. Within the training data, a 10% validation split is 
applied to monitor the neural network's performance during 
training. This approach helps track model convergence and 
identify any potential overfitting to the training data. Given 
the model’s relatively simple architecture and the deterministic 
nature of trajectory data (e.g., temporal dependencies), target-
ed hyperparameter selection was prioritized over exhaustive 
search methods. This approach aligned with the goal of light-
weight deployment for real-time applications. Finally, feature 
scaling was applied, using StandardScaler, to improve model 
generalization and performance.

�   Results 
This section compares the performance of the tradition-

al linear model with that of the AI model, using a range of 
key error metrics to assess prediction accuracy. The primary 
metric applied, Euclidean Error, measures the straight-line 
distance between predicted and actual values, providing an 
overall indicator of model accuracy. Additionally, several other 
metrics were utilized to offer a nuanced performance assess-
ment. Mean Absolute Error (MAE) was calculated to provide 
the average magnitude of errors in the same units as the target 
variable, giving a straightforward measure of typical error size. 
Mean Squared Error (MSE), which represents the average 

Evaluation metrics:
Euclidean Error measures the direct spatial distance be-

tween predicted and true positions, providing a clear indication 
of geographic accuracy, which is essential for trajectory appli-
cations. A smaller Euclidean error indicates that two points 
are closer together, while a larger error means they are further 
apart, and in this scenario, a smaller error would be optimal. 
This metric is very easy to interpret, and its calculations are 
straightforward. Euclidean Error is particularly suitable for 
trajectory prediction because it directly quantifies positional 
deviations in physical space—a critical requirement for avia-
tion safety and navigation. Additionally, its simplicity ensures 
computational efficiency, making it practical for real-time 
systems where rapid error assessment is necessary. Euclidean 
Error is defined as:

Equation (1)
Mean Absolute Error (MAE) calculates the average abso-

lute error in predictions, giving insight into general prediction 
accuracy and robustness against outliers. It gives an idea of 
how much, on average, the predictions deviate from the actual 
values. MAE gives the average magnitude of errors in the same 
units as the output. The lower the MAE, the better the model 
is at making accurate predictions. MAE can be represented as:

Equation (2)

Where yi is the actual value, ŷi is the predicted value, and n 
is the number of data points.

Mean Squared Error (MSE) is the average of the squared 
differences between predicted and actual values. It penalizes 
larger errors more than smaller ones due to the squaring of the 
differences. The lower the MSE, the better the model is per-
forming. A small MSE indicates the model is making mostly 
accurate predictions. It is more sensitive to outliers because it 
emphasizes larger errors. The formula for MSE is:

Equation (3)

The square root of MSE, Root Mean Squared Error 
(RMSE), has the same units as the target, making it easier 
to interpret in terms of geographical units. It provides insight 
into the overall prediction accuracy, emphasizing larger errors. 
Like MSE, the lower the RMSE, the better the model's per-
formance. However, RMSE is easier to interpret since it is in 
the same units as the data. RMSE is especially useful when 
larger errors need to be penalized more. RMSE can be derived 
as shown:

Equation (4)

Mean Absolute Percentage Error (MAPE) measures er-
ror as a percentage, making it helpful for understanding the 
model’s relative accuracy and comparing different models’ 
performance. A lower MAPE means better predictive perfor-
mance. It is particularly useful when comparing the accuracy 
of models across different datasets or scales. However, it can 
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For longitude prediction, the AI model again demonstrated 
a lower Euclidean Error of 36.073 compared to the tradition-
al model's 59.538. However, as with latitude prediction, the 
AI model underperformed significantly on other metrics. The 
MAE for the AI model was 5259.041, substantially higher 
than the traditional model’s 57.724, and the MSE and RMSE 
values for the AI model were also significantly higher (MSE 
of 27657509.561 and RMSE of 5259.041) compared to the 
traditional model’s MSE of 4560.720 and RMSE of 67.533. 
Furthermore, the MAPE value for the AI model was exceed-
ingly high at 5428.508, contrasting sharply with the traditional 
model's MAPE of 102.830. The R² metric could not be com-
puted for the AI model (NaN), whereas the traditional model 
achieved an R² of 0.472, suggesting some level of explanatory 
power in the traditional model. Table 2 and Figure 2 display 
these comparative results for longitude prediction.

squared differences between predicted and actual values, was 
also applied. This metric penalizes larger errors more heav-
ily than smaller ones due to the squaring of the differences, 
making it sensitive to outliers and emphasizing significant 
deviations in prediction. Root Mean Squared Error (RMSE), 
similar to MSE, also accentuates larger errors but is easier to 
interpret because it is expressed in the same units as the target 
data. To provide insights into performance in relative terms, 
Mean Absolute Percentage Error (MAPE) was used, which 
expresses error as a percentage, making it particularly useful 
for understanding model accuracy across different scales. Last-
ly, the R² score, or coefficient of determination, was applied 
to evaluate how well each model explains the variance in the 
target data. This metric indicates the proportion of variance 
in the dependent variable that is predictable from the inde-
pendent variables, thus providing an estimate of each model’s 
explanatory power. Collectively, these metrics offer a compre-
hensive view of model performance, revealing strengths and 
limitations across various aspects of predictive accuracy and 
error sensitivity.

While the AI model achieved a lower Euclidean error, in-
dicating better performance on this metric, it underperformed 
on other key metrics: Mean Absolute Error (MAE), Mean 
Squared Error (MSE), Root Mean Squared Error (RMSE), 
Mean Absolute Percentage Error (MAPE), and R².

The traditional linear model and the AI model displayed 
notable differences in predicting latitude. Although the AI 
model achieved a Euclidean Error of 36.073, which was sub-
stantially lower than the traditional model’s Euclidean Error 
of 59.538, the AI model's performance was inconsistent across 
other metrics. For instance, the MAE for the AI model was 
1835.694, which is considerably higher than the traditional 
model’s MAE of 10.986, indicating a greater overall prediction 
error. Similar trends were observed in the MSE, RMSE, and 
MAPE values, with the AI model recording markedly higher 
errors (MSE of 3369773.141 and RMSE of 1835.694) com-
pared to the traditional model (MSE of 223.239 and RMSE 
of 14.941). Additionally, while the traditional model had an 
R2 score of 0.458, the AI model’s error could not be computed, 
represented by NaN, meaning “Not a Number,” which signifies 
an undefined or unrepresented value. This shows how a valid 
error could not be provided for this metric. These discrepan-
cies suggest that while the AI model achieves closer proximity 
to actual values in specific instances (as indicated by lower Eu-
clidean Error), it may not consistently capture the underlying 
data structure as effectively as the traditional model across all 
error metrics. Table 1 and Figure 1 summarize these results for 
latitude prediction.
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Table 1: Comparison in latitude prediction accuracy between the Traditional 
and the AI model using various error metrics. The results indicate that the 
traditional model performed better than the AI model on every metric except 
for Euclidean error, where the AI model performed better by a small margin.

Table 2: Comparison in longitude prediction accuracy between the 
Traditional and the AI model using various error metrics. The results indicate 
that the traditional model performed better than the AI model on every 
metric except for Euclidean error, where the AI model performed better by 
a small margin.

Figure 1: The visual representation of the models’ performance in predicting 
the latitude indicates that the AI model performed worse than the traditional 
model at every error metric except Euclidean error (a lower error equals better 
accuracy). It can also be seen that there is a large margin of difference between 
the traditional model’s and AI model’s performance for each metric.

12/20/24, 1:45 PM Figure 1.PNG
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The findings indicate that while the AI model excels in min-
imizing Euclidean Error, it struggles with other critical error 
metrics, particularly MAE, MSE, RMSE, and MAPE, for 
both latitude and longitude predictions. This discrepancy may 
stem from the AI model’s sensitivity to data inconsistencies or 
its potential overfitting to specific patterns within the dataset. 
Conversely, the traditional linear model demonstrated more 
consistent performance across a wider range of error metrics, 
suggesting it may be more reliable for generalized location pre-
dictions despite a slightly higher Euclidean Error.

These results highlight the importance of selecting appro-
priate performance metrics when evaluating predictive models, 
as different metrics can highlight varying aspects of model 
accuracy and reliability. Future studies may explore ways to 
optimize the AI model's performance across all error metrics, 
potentially by refining model architecture or employing addi-
tional data preprocessing techniques to improve generalization.

�   Discussion 
The performance analysis shows that although the AI model 

performed better than the Linear model at Euclidean Error, it 
performed worse in other errors. This may be because while 
Euclidean error can be effective at assessing overall spatial 
accuracy in predictions, it is not able to capture the nuances 
of individual coordinate predictions, such as latitude or lon-
gitude.19 For instance, integrating spatial autocorrelation in 
machine learning models can enhance accuracy by accounting 
for geographical data. However, relying only on Euclidean dis-
tance can result in individual errors being masked by overall 
distance calculations, leading to potentially misleading perfor-
mance assessments. Traditional models like spatial lag, which 
incorporate spatial features, can better capture the spatial de-
pendency and reduce prediction errors.18,20

The AI model's poorer performance on MAE, MSE, and 
RMSE (despite its Euclidean error advantage) suggests it 
struggles with coordinate-specific precision. Unlike Euclide-
an distance, which aggregates errors into a single spatial value, 

these metrics penalize directional biases (e.g., consistent over-
estimation of altitude). The AI model’s focus on holistic spatial 
accuracy may come at the cost of localized errors in individual 
dimensions (latitude/longitude/altitude), which are weighted 
equally in traditional metrics.21

Another reason the traditional model performed better than 
the AI model could be the fact that traditional models often 
perform better on simpler metrics like RMSE, MSE, and 
MAE.22 This provides stable and interpretable results. If the 
model had a simpler structure, such as in linear regression or 
traditional random forest models, it delivered more consistent 
results due to fewer complexities in data relationships. While 
AI models may introduce noise or fail to generalize due to their 
complexity, traditional models, such as spatial lag or linear re-
gression, prioritize interpretability, making them more reliable 
for simpler datasets or metrics like RMSE and MAE.23 This 
stability is particularly evident when spatial dependencies are 
weak and the models are not overfitted. As seen in the compar-
ison between spatial models and traditional machine learning 
models, simpler models tend to generalize better under specific 
conditions.18 Furthermore, traditional models generally require 
fewer computational resources, enabling faster optimization 
and fewer errors caused by resource limitations during train-
ing.24

Additionally, AI models may exhibit significant errors due 
to several factors, such as overfitting training data, inadequate 
feature engineering, or insufficient hyperparameter tuning. 
Overfitting is particularly problematic when the model learns 
noise in the training data, leading to poor generalization on 
test data.25 Especially on small or imbalanced datasets, AI 
models are prone to overfitting and memorizing instead of 
generalizing, while traditional models, which are less data-in-
tensive, are less likely to overfit.26 Additionally, the inclusion 
of irrelevant or insufficient features may increase the runtime 
and hinder the model’s ability to capture complex relationships 
between inputs and outputs.25 Furthermore, fine-tuning model 
architecture and parameters is crucial to optimizing perfor-
mance. AI models often depend on well-designed features. 
Inadequate preprocessing or irrelevant features can degrade 
their performance compared to traditional models, which are 
more robust to such shortcomings.27 For instance, AI models 
may overlook natural spatial relationships unless specifical-
ly programmed, unlike spatial regression models designed to 
address geographic dependencies explicitly.28 The AI model’s 
suboptimal performance on non-Euclidean metrics may also 
stem from its inability to prioritize coordinate-specific errors. 
Euclidean distance aggregates spatial deviations into a single 
value, potentially masking directional biases.29 In contrast, 
traditional models optimize for individual coordinate errors 
directly, aligning better with metrics like MAE. Addition-
ally, the AI model’s fixed architecture (e.g., 64-node hidden 
layers) may lack the adaptability to capture localized spatial 
patterns, whereas traditional methods like spatial lag explicit-
ly model geographic dependencies.30 This limitation becomes 
pronounced when training data lacks sufficient variability in 
spatial-temporal features, further exacerbating directional er-
rors. While the AI model’s superior performance in Euclidean 
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Figure 2: The visual representation of the models’ performance in predicting 
the longitude indicates that the AI model performed worse than the 
traditional model at every error metric except Euclidean error (a lower error 
equals better accuracy). It can also be seen that there is a large margin of 
difference between the traditional model’s and AI model’s performance for 
each metric, suggesting the traditional model may be reliable for generalized 
local predictions.
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error suggests potential for spatial accuracy, its inconsistency 
across other metrics raises questions about its robustness. For 
example, probabilistic models like Bayesian networks16 or hy-
brid approaches16 may better handle uncertainty in dynamic 
conditions, such as weather disruptions or air traffic variability, 
by combining deterministic predictions with probabilistic ad-
justments.

The AI model’s higher MAE/RMSE scores may also stem 
from its inability to prioritize error types critical for aviation. 
For example, altitude errors (safety-critical) and time errors 
(delay-sensitive) are treated equally with lateral position er-
rors in the loss function. Traditional models, by contrast, often 
optimize for domain-specific priorities (e.g., penalizing alti-
tude deviations more heavily), aligning better with operational 
needs.

Fundamentally, the AI model’s failures in non-Euclidean 
metrics reflect a misalignment between its training objective 
(minimizing bulk spatial error) and aviation’s need for dimen-
sion-aware precision. While Euclidean optimization suits 
general spatial tasks, trajectory prediction requires balancing 
heterogeneous errors (e.g., time vs. altitude), necessitating 
custom loss functions or hybrid architectures that blend AI’s 
nonlinear capacity with traditional models’ interpretable con-
straints.

It is found that advanced AI techniques like deep learning, 
though powerful, require careful design choices to minimize 
these issues.15,18 Advancing the performance of AI mod-
els requires the exploration of more sophisticated models or 
alternative architectures. Emerging techniques such as rein-
forcement learning, generative adversarial networks (GANs), 
transfer learning, and neuro evolution offer promising solutions 
to issues that traditional machine learning models struggle 
with. In addition, these models significantly enhance predic-
tive accuracy and reduce errors, leading to better performance. 
For instance, GANs have been utilized in scenarios requiring 
creative data generation, such as vehicle trajectory prediction,13 
and show great potential for use in the trajectory prediction of 
aircraft. Similarly, reinforcement learning allows models to in-
teract with their environments, developing accuracy over time, 
which could improve the performance of the model, leading 
to better trajectory predictions. Explainable AI (XAI), which 
refers to a set of processes and methods designed to make AI 
models more transparent and interpretable to humans, also 
offers frameworks that could not only improve performance 
but also make AI decisions more interpretable and transparent, 
aiding in debugging and model refinement. It takes account-
ability for its decisions while also mitigating bias.31

Moreover, emerging technologies, such as quantum AI, are 
beginning to demonstrate significant potential, offering mas-
sive computational power capable of addressing highly complex 
tasks with greater precision.32 This diversity in AI techniques 
provides a range of alternatives that may better align with the 
specific requirements of a given problem domain and dataset 
characteristics. These advancements highlight the importance 
of exploring and adopting innovative architectures, particularly 
in scenarios where traditional models underperform.14

The findings of this study align with the potential of ad-
vanced techniques like reinforcement learning (RL) and GANs 
to address observed shortcomings. RL’s iterative reward-based 
optimization could dynamically adjust predictions in response 
to real-time errors (e.g., wind shifts), while GANs could syn-
thesize rare but critical scenarios (e.g., extreme turbulence) to 
improve generalization. Explainable AI (XAI) frameworks, 
such as SHAP or LIME, could further bridge the gap between 
the AI model’s ‘black-box’ predictions and the interpretability 
of traditional models, enabling targeted debugging of coordi-
nate-specific errors (e.g., latitude bias) and fostering trust in 
aviation applications. 

The linear model’s stability in MAE and RMSE shows us 
its reliability for scenarios where computational efficiency is 
prioritized, indicating the need to align model selection with 
specific operational requirements. For example, AI models for 
precision in controlled environments versus traditional mod-
els for generalizability. Therefore, we suggest that future work 
should test hybrid frameworks to mitigate the limitations ob-
served in standalone AI or linear approaches.

�   Limitations and Future Directions 
While the data obtained from the OpenSky network was 

accurate, it was restricted in quantity, potentially limiting the 
model's ability to generalize across diverse scenarios. The data-
set also had a few inconsistencies, such as missing values, which 
impacted the predictive accuracy of the model. Inaccuracies in 
recorded flight parameters or limited temporal and spatial res-
olution may have introduced noise into the training process, 
which might have led the model to provide biased or inac-
curate predictions. The complexity of the AI model used in 
this study might have contributed to its overfitting or under-
fitting of the data. Overfitting arises when the model captures 
noise in the training data, resulting in reduced generalization 
for unseen data. In contrast, underfitting occurs when a mod-
el is too simple to capture the complexities or the underlying 
patterns in the data. To address these issues, hyperparameter 
tuning methods like grid search, random search, or Bayesian 
optimization could have been implemented to find the best 
hyperparameter configurations. Additionally, regularization 
methods like weight decay, dropout, or early stopping could 
have been utilized to reduce overfitting. On the other hand, 
to minimize underfitting, the complexity of the model could 
have been increased using feature engineering and hyperpa-
rameter tuning. Moreover, the choice of features utilized might 
not have fully captured the dynamics of the system being mod-
eled. Features like weather, turbulence, and air traffic at that 
specific time could have been incorporated to capture under-
lying patterns and increase predictive accuracy. While the data 
collected represents a diverse range of flights from many flight 
regions, the data was collected during a specific time frame, so 
it might not be representative of data obtained during other 
time frames, which limits the model’s ability to accurately pre-
dict data from other time frames.  The dataset may also contain 
inherent biases based on geographical coverage, aircraft types, 
or airline operators represented in the OpenSky network. Such 
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sampling biases could skew the model's understanding of 
typical flight patterns. Additionally, missing values in critical 
parameters like altitude or velocity may reflect systemic gaps in 
ADS-B coverage rather than random noise. These data quality 
issues compound the challenges of training reliable predictive 
models, as they may cause the AI system to learn artifacts of 
data collection limitations rather than true trajectory patterns.

Several data preprocessing and augmentation approaches 
could mitigate these limitations. For missing values, multiple 
imputation techniques could estimate plausible values while 
accounting for uncertainty, rather than simple deletion or mean 
imputation. For temporal biases, implementing time-based 
stratification during train-test splits would ensure all time pe-
riods are represented. For spatial biases, geographic weighting 
could balance representation across flight regions. To reduce 
noise, Kalman filtering could be utilized to smooth erratic po-
sition reports while preserving true trajectory patterns.

For more robust testing, implementing k-fold cross-valida-
tion (e.g., 5- or 10-fold) is recommended, especially for the 
traditional linear regression model.33 This technique provides 
a more comprehensive performance estimate across different 
data partitions. Additionally, using early stopping or monitor-
ing validation loss can help prevent overfitting in the neural 
network model by stopping training when improvement pla-
teaus.34

To enhance AI model performance, exploring advanced 
methodologies is crucial. Techniques such as reinforcement 
learning, GANs, and transfer learning offer promising avenues 
for improvement. For example, GANs have shown success 
in generating synthetic trajectory data to improve predictive 
models,13 while reinforcement learning can iteratively optimize 
models by interacting with dynamic environments.

Explainable AI (XAI) frameworks also present significant 
opportunities, making AI predictions more transparent and in-
terpretable. By improving model accountability and mitigating 
bias, XAI frameworks not only enhance performance but also 
increase trust in AI systems.31

Emerging technologies, such as quantum AI, offer un-
paralleled computational power, which could revolutionize 
trajectory prediction by addressing the complexities of large-
scale, nonlinear datasets with higher precision.32 Exploring 
these techniques alongside traditional models will help identify 
the most effective methodologies for optimizing 4D trajectory 
prediction.

These findings have direct implications for real-world air 
traffic management (ATM) systems. The comparative per-
formance analysis suggests that hybrid systems combining 
traditional models' reliability with AI's pattern recognition 
capabilities could optimize trajectory prediction in opera-
tional environments. For instance, linear models could serve 
as baseline predictors while AI components handle complex, 
nonlinear scenarios like weather disruptions or congested 
airspace, creating a more robust ensemble system. These re-
sults could inform the phased implementation of AI in ATM 
systems. The performance metrics established here provide 
concrete benchmarks for aviation authorities evaluating predic-
tion systems, particularly in balancing accuracy requirements 

with computational constraints. Future work could test these 
models in simulation environments mirroring actual air traffic 
control workflows to validate operational feasibility.

In summary, this study shows that while traditional models 
excel in simplicity, efficiency, and interpretability, AI models 
show immense promise for handling complex, nonlinear data. 
However, their effectiveness depends on overcoming challeng-
es such as overfitting and inadequate feature engineering. The 
integration of advanced techniques, including GANs, rein-
forcement learning, and XAI, highlights the potential for AI 
to set new standards in 4D trajectory modeling, improving air 
traffic management and operational efficiency.
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