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ABSTRACT: Irritable Bowel Syndrome (IBS) is a widespread functional disorder of the gastrointestinal tract (GI), 
characterized by abdominal pain and altered bowel habits. Traditional IBS diagnosis is done through self-reported questionnaires 
characterizing frequencies and severities of associated symptoms. The gut microbiome has shown a significant correlation with 
various IBS symptoms, and treatments targeting it have been effective in mitigating its symptoms. Previous studies have correlated 
the gut microbiome with a single label of IBS, whereas it has multiple subtypes. In this study, machine learning (ML) and deep 
learning (DL) models have been developed to correlate gut microbiome with five IBS symptoms: constipation, acidity, diarrhea, 
bloating, and burping. Using data from 1100 patients, Graph Neural Networks (GNNs) outperformed traditional ML models 
by ~15%, while Feed Forward Neural Networks (FFNNs) showed ~20% improvement, achieving 85-90% accuracy for symptom 
severities and 80-85% for frequencies. Permutation importance was used to compute the important features according to the 
model, along with Pearson's correlation analysis to identify the direction in which the features varied with the output. Taxon 
1737404 (Murdochiella vaginalis), 768507 (Runella slithyformis), and 1760 (Actinomyces israelii) had the highest permutation scores 
with a positive correlation, while 1236 (Escherichia coli) and 186826 (Enterococcus faecium) had the strongest permutation scores 
with a negative correlation. Two web applications were developed for the model, one of which allows other clinicians to upload 
their datasets, and the other, which returns predictions based on uploaded gut tests. Thus, this study demonstrates the potential 
of deep learning to leverage gut microbiome data for the accurate prediction of IBS symptoms, along with identifying essential 
biomarkers. 
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�   Introduction
IBS is a collection of long-term digestive conditions that are 

prevalent in the GI tract.1 One in every eleven people glob-
ally and one in every fourteen people in India suffer from a 
set of conditions known as IBS.2 IBS significantly impacts 
quality of life, causing chronic abdominal pain, irregular bowel 
movements, and psychological distress that can affect work pro-
ductivity and social relationships. Existing literature has shown 
an imbalance in the gut microbiome, or “gut dysbiosis”, to have 
a strong correlation with IBS.3 Many therapies that tailor to 
the gut microbiome have shown a significant improvement in 
overall IBS Symptoms.4 The current diagnosis of IBS is based 
on the Rome IV criteria, which involves clinicians studying 
self-reported severities and frequencies of various IBS-related 
symptoms from patients and using that data to diagnose them 
with IBS.5 Some of these symptoms include bloating, acidity, 
constipation, diarrhea, and burping. As per the literature re-
view, there are no reliable biomarkers for IBS.

Research has shown an exponential growth in microbial data, 
outlining the need for ML.6 ML models have been developed 
by correlating the gut microbiome with a single IBS output, 
showing significant correlations.7 ML and DL have also been 
used extensively in microbiome research, with studies showing 
DL to be more powerful due to its ability to capture microbi-

al dynamics.8 This research study aims to develop a software 
and a platform to perform IBS diagnosis based on information 
gained from the gut microbiome, using symptom-based clas-
sification of symptoms. Traditional IBS models, although rare, 
are trained on a binary IBS output column. This study aims to 
widen the scope of IBS diagnosis by training the model using 
the various IBS symptoms (their self-reported severities and 
frequencies). Testing for severities and frequencies could aid 
the clinical landscape for IBS, as clinicians can identify target-
ed biomarkers for each symptom, and subjectivity in patient 
responses can be eliminated.

Previous microbiome-IBS studies have trained models based 
on Caucasian and American datasets (such as the European 
Nucleotide Archive and the American Gut Project). 9, 10 Since 
the gut microbiome is influenced by the environment, a South 
Asian/ Indian microbial profile is likely very different from an 
American/ Caucasian profile. Thus, in this study the relative 
abundance data of the taxon in the gut microbiome for 1089 
Indian patients was gathered with a questionnaire containing 
how badly (on a scale of 1-10), symptoms such as bloating, 
acidity, constipation, diarrhea, and burping affected their daily 
lives and how frequently (per week) these symptoms affected 
them). Several ML models, including Random Forest (RF) 
and Adaptive Boosting (AB), were run to build the models. 
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A Graph Convolutional Network (GCN) was also developed, 
followed by FFNNs, which combine the GNN’s ability to ef-
fectively capture the taxa in the gut with a simpler architecture, 
delivering a significantly higher accuracy (of around 85-90% 
for severities and 80-85% for frequencies). Feature importances 
were also identified. Overall, this work represents a significant 
step towards objective, microbiome-based IBS diagnosis and 
targeted treatments while addressing the critical gap in popu-
lation-specific research for the Indian subcontinent.

�   Methods
Data Collection:
1089 Gut Microbiome Tests (GMTs) were sourced from 

SOVA Health. Microbiome data were derived from 16S rRNA 
sequencing and provided as relative abundance profiles. These 
GMTs were collected anonymously, with a unique identifier 
for each patient, adhering to the ethics of data privacy. Each of 
these GMTs contained the relative abundances of 31258 tax-
on and a self-reported questionnaire by patients based on the 
Rome IV criteria of IBS regarding the severities and frequen-
cies of various IBS symptoms. All the data was anonymized 
and collected in compliance with data privacy regulations.

Model Building:
Ten models of each type were trained for different symp-

tom severities and frequencies. RF and AB ML models were 
developed and compared. For the deep learning approach, 
a GNN was built using Torch Geometric. The network ar-
chitecture consisted of three Graph Convolutional Network 
(GCN) layers followed by global pooling and fully connected 
layers. The algorithm constructs a weighted graph represent-
ing relationships between microbiome features based on their 
co-occurrence patterns in the dataset. Initially, it computes 
individual feature support values by calculating the propor-
tion of samples where each feature is present. The pairwise 
relationships between features are then quantified using two 
complementary metrics: lift and Jaccard similarity. The lift 
metric measures how much more likely features are to occur 
together compared to random chance, while the Jaccard simi-
larity captures the overlap between feature occurrences relative 
to their union. These metrics are combined using a weighted 
average (70% lift, 30% Jaccard) to produce a final co-occur-
rence score for each feature pair. The algorithm then creates 
graph edges for feature pairs whose combined score exceeds a 
specified threshold (default 0.3). To ensure the graph remains 
fully connected and to stabilize subsequent graph-based com-
putations, self-loops with maximum weight (1.0) were added 
for each feature. The resulting graph structure was represent-
ed using two Torch tensors: an edge index tensor encoding 
the connectivity pattern and an edge weight tensor containing 
the corresponding co-occurrence scores, as shown in Figure 
1. This graph representation captured both direct and indi-
rect relationships between microbiome features, enabling the 
model to leverage community structure information during 
learning.

For activation functions, ReLU was used after each GCN 
layer, followed by batch normalization and a dropout rate of 
0.3 to prevent overfitting. The model combined both mean 
and sum pooling operations to capture different aspects of 
the graph structure. The final classification layers used ReLU 
activation with a softmax output layer for multi-class predic-
tion. The GNN implemented a graph convolutional network 
architecture designed for symptom classification, as shown in 
Figure 2. It employed three sequential GCN layers (GCN-
Conv) that transformed the input features through message 
passing operations across the graph structure. Each GCN layer 
mapped the input to a hidden dimension space, maintaining 
the same hidden dimensionality across layers. The architec-
ture incorporated batch normalization after each convolution 
to stabilize training and accelerate convergence. Following the 
graph convolutions, the model combined global mean and 
sum pooling operations to aggregate node-level features into 
graph-level representations. These pooled features were con-
catenated and processed through two fully connected layers 
for final classification. Dropout (0.3) is applied throughout to 
prevent overfitting. The model uses ReLU activation functions 
between layers to introduce non-linearity. This architecture 
enables the network to learn both local structural patterns 
through convolutions and global graph properties through 
pooling operations.

The following were the hyperparameters that were used for 
tuning.

Learning rate: [0.01, 0.001, 0.0001]
Hidden Layer Dimensions: [64,128,256]
Dropout rate: [0.2,0.3,0.4]
Co-occurrence threshold: [0.2, 0.3, 0.4]
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Figure 1: A graph visualisation, created for an individual sample. Round, 
light blue nodes represent taxon, and edge connections represent co-
occurrences between taxon, ranging from violet to light blue: violet having the 
least weight and yellow having the most weight.
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A specialized FFNN architecture, as shown in Figure 3, 
was developed using PyTorch Geometric, comprising three 
interconnected components. The proposed FFNN architec-
ture consists of three parallel processing pathways that capture 
different aspects of the microbiome data. The first pathway 
implements a feature attention mechanism using two fully 
connected layers with ReLU activation, which learns to as-
sign importance weights to different taxonomic features. The 
second pathway, termed the abundance network, processes the 
raw abundance values through a series of transformations, in-
cluding linear layers, ReLU activation, batch normalization for 
stable training, and dropout (p=0.3) for regularization. Sim-
ilarly, the third pathway, the interaction network, maintains 
an identical structure to the abundance network but processes 
the data independently to capture potential inter-species in-
teractions. The outputs from the abundance and interaction 
networks are concatenated and processed through final lay-
ers that gradually reduce dimensionality while maintaining 
the same regularization techniques (batch normalization and 
dropout). All hidden layers maintain a consistent dimen-
sionality, while the final output layer produces predictions 
appropriate for the target variable. This architecture enables 
the model to simultaneously consider both direct abundance 
effects and potential ecological interactions while automatical-
ly learning which features are most relevant for the prediction 
task.

Evaluation Metrics:
To evaluate the performance of the model, various metrics 

were utilised to assess the performance of the model. The 
metrics were accuracy, precision, recall, F1 Score, confusion 
matrices, specificity, and sensitivity. All metrics were calculated 
using weighted averages to account for potential class imbal-
ance in the dataset. Permutation importance was computed 
separately for each symptom model (severity and frequency), 
allowing symptom-specific feature relevance to be evaluated.

Feature Importance Analysis:
For feature importance analysis, the following methods were 

employed:

1. Permutation Importance: Feature importance was mea-
sured by randomly shuffling feature values and observing the 
decrease in the model’s performance. A larger decrease in per-
formance indicates higher feature importance, as it suggests 
the model heavily relies on that feature for accurate predic-
tions.

2. Feature Correlation: Spearman's correlation between each 
microbial abundance was applied, providing a measure of the 
statistical relationship between individual features and the tar-
get variable, along with a direction of that measure.

Permutation importance and feature correlation were 
computed separately for each symptom model (severity and 
frequency), allowing symptom-specific feature relevance to be 
evaluated.

Cross Validation:
To ensure robust model evaluation, k-fold cross-validation 

was implemented on the best model (k=5), where the dataset 
was partitioned into k equal-sized segments. This approach 
iteratively used k-1 segments for training while reserving one 
segment for validation, rotating through all possible combi-
nations. This methodology provided a more reliable estimate 
of the model's generalization performance compared to a sin-
gle train-test split. The dataset was also tested on 5 external 
GMTs, and it was able to deliver predictions with an accuracy 
of ~0.8.

Web Application:
The web applications were then created and deployed. The 

web applications were built using the Hugging Face platform 
and are hosted on a HIPAA-compliant cloud server with se-
cure, encrypted data handling. Two web apps were built to 
include two functionalities: the users can upload their GMT, 
and the model diagnoses them with IBS symptoms, and cli-
nicians can upload entire datasets on which the model is run, 
returning validation metrics as well as potential treatment tar-
gets (Figure 4). Five practicing gastroenterologists reviewed 
and provided feedback on the web application interfaces and 
functionality prior to deployment. The web applications are 
hosted on a HIPAA-compliant cloud with encrypted data 
transmission. The links of the two web applications are as fol-
lows:

1. https://huggingface.co/spaces/anavgupta/ibs-predictions
2. https://huggingface.co/spaces/anavgupta/ibs-dataset

Figure 2: The architecture of the GNN. This figure shows a flowchart of its 
components, and mathematical functions are utilized to construct the graphs 
and train the model.

Figure 3: The FFNN architecture. A flowchart of its components and 
mathematical functions is utilized to construct the graphs and train the model.
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FFNNs displayed the highest accuracy of 80-85% for symp-
tom frequency and 85-90% for frequencies. Amongst the 
models built on the severity of different symptoms of IBS, the 
FFNN model for the severity of burping achieved the highest 
severity accuracy of 0.90, and amongst the models built on the 
frequency of different symptoms of IBS, the FFNN model for 
the frequency of bloating had the highest frequency accuracy 
of 0.86. ROC-AUC curves were computed for the FFNN, as 
shown in Figure 5.

To evaluate the model’s performance, confusion matrices 
were built, which gave the frequency of true positives, true neg-

�   Result and Discussion 
This section presents the results obtained from machine 

learning and deep learning models applied to the gut micro-
biome for predicting IBS. The evaluation metrics achieved for 
FFNNs, RF, AB, and GNNs are listed in Tables 1, 2, 3, and 
4, respectively. After cleaning and preprocessing, 1089 sam-
ples were retained for analysis. Principal Component Analysis 
(PCA) reduced dimensionality from 31,259 to 1024. First, RF 
and AB models were trained, delivering accuracies of 65-75%. 
After this, GNNs were trained, delivering a 10-15% improve-
ment with accuracies ranging from 80-85%. However, due 
to its complexity and overfitting on the training set, a lighter 
FFNN architecture was trained, which not only eliminated 
complexity but also improved accuracy by ~5%.
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Figure 4: A layout of web applications. (A). This shows the web application 
interface developed for Clinicians (B). This shows the web application 
interface developed for patients.

Figure 5: ROC-AUC curves generated for FFNNs using matplotlib. 
(A) This figure shows the ROC-AUC curves for the models generated for 
severities of all the symptoms. (B) This figure shows the ROC-AUC curves 
for the models generated for frequencies of all the symptoms.

Table 1: Evaluation metrics for FFNN models for different symptoms. All 
symptom severities and frequencies were tested for accuracy, precision, recall, 
F1-score, specificity, and sensitivity.

Table 2: Evaluation metrics for RF models for different symptoms. All 
symptom severities and frequencies were tested for accuracy, precision, recall, 
F1-score, specificity, and sensitivity.

Table 3: Evaluation metrics for RF models for different symptoms. All 
symptom severities and frequencies were tested for accuracy, precision, recall, 
F1-score, specificity, and sensitivity.

Table 4: Evaluation metrics for GNN models for different symptoms. All 
symptom severities and frequencies were tested for accuracy, precision, recall, 
F1-score, specificity, and sensitivity.
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taxon and the output. Through this, a clinician will be able 
to identify whether a particular taxon is negatively or posi-
tively correlated with the output and how strongly it impacts 
the model’s performance. The top 10 taxa for each symptom, 
namely diarrhoea, constipation, burping, acidity, and bloating, 
along with their importance and correlation to IBS, are shown 
in Tables 7, 8, 9, 10, and 11, respectively.

atives, false positives, and false negatives. Confusion matrices 
give insights into the biases of an ML model and check if it is 
correctly able to predict high and low outputs. The confusion 
matrices for different FFNN models built on the frequency 
and severity of each symptom were computed as listed in Table 
5.

A validation was performed on all the FFNN models, af-
ter which the model displayed strong validation results with a 
1-2% difference in frequencies and a 2-4% difference in sever-
ities, as shown in Table 6. The model demonstrated consistent 
performance across all folds, with minimal variance between 
different data splits.

Permutation importance and feature correlation computed 
separately for each symptom model allowed symptom-specif-
ic feature relevance to be evaluated. This approach provided 
complementary insights into both the predictive power of 
each taxon and the direction of the relationship between the 

DOI: 10.36838/v7i8.10

Table 6: Fivefold validation results. The metrics tested were accuracy, 
precision, recall, and F1 score.

Table 5: Confusion Matrices for each symptom severity and frequency. 
Accuracies for different models lie between 80% and 90%. Table 7: The top ten most important taxa for diarrhea. Arranged from 

most influential to least influential according to their permutation scores. 
Correlation coefficients are also included.

Table 8: The top ten most important taxa for constipation. Arranged from 
most influential to least influential according to their permutation scores. 
Correlation coefficients are also included.

Table 9: The top ten most important taxa for burping. Arranged from 
most influential to least influential according to their permutation scores. 
Correlation coefficients are also included.
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�   Conclusion 
This study developed and validated a novel deep learning 

approach for IBS diagnosis using gut microbiome data from 
1,089 Indian patients. The FFNN achieved 85-90% accuracy 
for symptom severities and 80-85% for frequencies, outper-
forming existing models by 15-20%. 71 unique taxonomic 
biomarkers were identified, with Amycolatopsis, Acinetobacter, 
Clostridium, and Acetivibrio species occurring repeatedly 
across symptoms and having the highest permutation scores. 
The model's performance was validated through 5-fold 
cross-validation and external testing, demonstrating robust 
generalization. Two web applications were developed for clin-
ical use, enabling both individual diagnosis and dataset-wide 
analysis. This work represents a significant advancement in ob-
jective IBS diagnosis, particularly for the understudied South 
Asian population, while providing specific microbial targets for 
therapeutic intervention. Future work should incorporate lon-
gitudinal data and additional health metrics to further improve 
diagnostic accuracy. The identified biomarkers require experi-
mental validation to confirm their biological relevance in IBS 
pathophysiology.
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