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ABSTRACT: Biodiversity is vital for ecological balance, as every species serves a specific function within its ecosystem. The 
rapid decline in certain animal populations highlights the urgent need for conservation efforts. This study employs a Random 
Forest model with an integrated data pipeline to predict animal population changes based on physical traits over time. Using the 
Living Planet Index (LPI) and cross-referenced Wikipedia data, the study examines features such as thermoregulation, habitat, 
diet, reproductive strategy, and flight capability. Missing data was addressed through forward filling, ensuring continuous and 
reliable datasets. Results show a minimal correlation between physical traits like habitat and thermoregulation and population 
trends, indicating that while physical traits offer insights, incorporating environmental or behavioral data is essential for accurate 
predictions. Future research can build on this framework by integrating advanced modeling techniques and broader datasets to 
improve biodiversity conservation strategies. 
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�   Introduction
This research aims to predict future animal population trends 

by analyzing physical traits such as habitat, thermoregulation, 
diet, and reproductive strategies. These traits influence species' 
adaptability to environmental changes. For example, climate 
shifts may impact endothermic animals differently than ecto-
thermic ones, and species with specialized habitat needs may 
struggle as environments deteriorate. By identifying species at 
higher risk of population declines, this study seeks to guide 
conservation efforts toward proactive intervention.

Biodiversity is essential, as every species contributes to its 
ecosystem. Secondary and tertiary consumers regulate prey 
populations, pollinators like bees and hummingbirds support 
plant reproduction, and decomposers such as flies and isopods 
recycle nutrients. In 2023, 21 animal species were declared 
extinct in the United States, with estimates predicting up to 
150 species will vanish globally each day, equivalent to one 
extinction every 10 minutes.1 The United Nations warns that 
nearly 1 million species are at risk of extinction due to human 
activities.2 Freshwater species populations have declined by 
83% on average since 1970,3 and the Amazon rainforest lost 
approximately 12,000 square kilometers of forest in 2022, an 
area comparable to Qatar.3 Population declines disrupt ecosys-
tems, as species' ecological roles go unfulfilled. For instance, 
gray wolves' extinction in Yellowstone National Park caused an 
unchecked rise in wild elk populations, leading to overgrazing 
and vegetation decline.4 This example underscores how losing 
a single species can destabilize an entire ecosystem. Preserving 
current animal populations is, therefore, critical.

By examining the relationship between physical traits and 
population trends, this research identifies species more vulner-
able to environmental changes based on their traits. It seeks 
to determine how physical traits correlate with population 

trends and whether these traits can predict species most at risk 
of population decline. This approach not only enhances un-
derstanding of how traits influence survival but also prioritizes 
conservation for species at higher risk, increasing the chances 
of preserving biodiversity before irreversible damage occurs.

Researchers argue whether traits alone can reliably predict 
extinction risk without considering environmental context.5 
This study contributes to that discussion by evaluating how well 
physical traits predict animal population trends when modeled 
with statistical population features. The use of a Random For-
est regressor aligns with applications of machine learning in 
conservation, where similar models have been used to assess 
extinction risk, forecast species distributions, and identify vul-
nerability patterns across taxonomic groups.6 By focusing on 
interpretable models and measurable traits, this study helps 
solidify the role of trait-based prediction in biodiversity risk.

While prior studies done by Qi have used Random Forest 
algorithms in bioinformatic settings to evaluate the impor-
tance of input features, they often do so in statistical contexts 
without direct usage in ecological population modelling.7 Sim-
ilarly, Moretti and Legg used plant and animal traits to assess 
responses to ecological disturbances, but did not use historical 
data.8 This study extends both studies by using long-term pop-
ulation trends with ecological and physical attributes to better 
assess the predictive value of traits. Using feature importance 
values has been common when conducting Random For-
est-based studies. However, our usage of the ecological setting 
could bring challenges in trait interpretation due to environ-
mental variability. These studies provide a strong foundation 
for applying similar methods to predict species populations 
and assess vulnerabilities.

We have considered using other models, such as indi-
vidual-based models (IBMs), which focus on behavior and 
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physiology to predict species responses to environmental 
changes, making them useful for complex ecosystems. We 
also considered using dynamic range models (DRMs), which 
account for population movements and growth, and offer supe-
rior predictions in dynamic climates. While these approaches 
address specific aspects of species responses or general predic-
tion techniques, they do not focus on analyzing physical traits 
to predict population trends across a broad range of species. 
This study builds on existing work by integrating physical 
traits and environmental factors to enhance prediction accura-
cy and inform targeted conservation strategies.

An efficient data pipeline is essential for this study, as it en-
sures smooth data flow from collection to model training and 
performance evaluation. Unlike typical conventional studies, 
this research deals with high-dimensional, scattered data, in-
corporating diverse physical and environmental factors across 
many species. Managing such complexity requires a robust 
pipeline to handle missing values, select features, and optimize 
models. This ensures data integrity and enhances prediction 
accuracy in trait-based population modeling. The pipeline 
supports data collection, preprocessing, model training, and 
evaluation.

One major challenge addressed was the prevalence of miss-
ing data in the population records. While the Living Planet 
Index (LPI) provides comprehensive data on over 32,000 pop-
ulations and 5,200 species, its records for some species over 
50 years are incomplete.9 The pipeline resolved this issue by 
preprocessing the data, including imputing missing values to 
ensure continuity and completeness. This step was critical for 
preparing reliable datasets for modeling. This study utilized 
the LPI as a primary source due to its extensive biodiversity 
data. Preprocessing involved cleaning the data and handling 
missing values to establish a high-quality input for the model. 
The study sought to uncover correlations between the two by 
examining species populations alongside their physical traits. 
The Random Forest model was chosen for its ability to identi-
fy correlations and generate accurate predictions. Preprocessed 
data was fed into the model, which employs multiple decision 
trees. Each tree acts as an individual model, learning correla-
tions between features to improve predictive accuracy. The 
model's performance was rigorously evaluated to identify areas 
for improvement and ensure reliable outcomes.

�   Methods
Data Collection and Sources:
We analyzed population trends using datasets from the Liv-

ing Planet Index (LPI), developed by the Zoological Society 
of London (ZSL) and the World Wildlife Fund (WWF) 
(WWF/ZSL, 2022). This index tracks population changes 
across more than 32,000 populations and over 5,200 species, 
including mammals, birds, amphibians, reptiles, and fish. It 
gathers data from peer-reviewed studies, government reports, 
and wildlife surveys, offering a comprehensive view of how 
environmental changes affect species populations. Integrating 
the LPI dataset allowed us to examine historical population 
trends, identify correlations, and improve predictions for fu-
ture patterns.

Table 1 summarizes the LPI dataset, which provides taxo-
nomic groupings and population data but lacks information 
on the physical traits of animals. We developed a data pipeline 
to fill this gap by sourcing additional details from external re-
sources. Specifically, we used Wikipedia to extract and analyze 
the physical traits of various species. Recognizing the poten-
tial limitations of Wikipedia’s credibility, we implemented a 
validation process. To ensure accuracy, this involved cross-ref-
erencing data with reliable scientific databases, such as the 
Global Biodiversity Information Facility. Using taxonomic 
classifications, we categorized animals based on shared phys-
ical traits, minimizing errors from relying on a single source.

We utilized the Wikipedia-API Python library to retrieve 
page content and identify relevant details through targeted 
keywords. Although Wikipedia served as the primary data 
source, our pipeline is adaptable for incorporating information 
from other credible databases in future research. This process 
enabled us to organize species into five sub-datasets, focus-
ing on key traits: thermoregulation, habitat, dietary habits, 
flight capability, and reproductive strategies. These features 
were chosen for their influence on population trends. Ther-
moregulation affects metabolic rates and survival strategies, 
while habitat provides insight into environmental pressures 
on species. Dietary habits (e.g., carnivorous, omnivorous, her-
bivorous) reflect resource availability and feeding behavior. 
Reproductive strategies (e.g., live birth, egg-laying) influence 
growth rates and survival. Flight capability impacts species 
mobility and adaptation to environmental changes. These 
traits offer a comprehensive understanding of the ecological 
and biological factors shaping population dynamics.

Data Pipeline:
The effective management and processing of data is of great 

importance, as the analysis involves complex datasets with 
diverse features. The data we are working with spans many spe-
cies and features, resulting in high-dimensional data that may 
complicate analysis. Additionally, combining data from various 
sources, such as the Living Planet Dataset (LPD_2022.csv) 
and the Wikipedia API, requires careful handling to ensure 
the integrity of the sources while being consistent and accu-
rate. Furthermore, the presence of missing population data in 
the time-series form creates a challenge for creating continuity 
and reliability between data points.
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Table 1: Formatting of information in the Living Planet Index (LPI) dataset, 
including data on species populations, geographic locations, and time-series 
information. The table presents the structure of the dataset used for analysis.
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As shown in Figure 1, the initial phase of the data pipe-
line involves data collection, using the LPD dataset and the 
Wikipedia API. This stage establishes the foundation for 
subsequent analysis. Therefore, careful consideration must be 
given to selecting appropriate data sources and methods to en-
sure reliability.

To prepare the information for use in the Random Forest, 
the thousands of species needed to be grouped by features. This 
was addressed by first loading species data, which involved 
creating a function that would read CSV files from a speci-
fied directory. Each file contained data relating to a specific 
genus. Using the organized formatting of the files, important 
information such as species names, population counts over the 
years, and other relevant data was extracted.

The function “load_species_data” aggregated this informa-
tion, where each dataset was transformed to a melted format, 
which would simplify analysis by merging data into columns 
for species, year, and population. Additionally, each entry was 
supplemented with details about its ‘Blood_type’ (thermoreg-
ulation), habitat, genus, and more, which were used in later 
stages of analysis.

This data preparation step was also supported by integrat-
ing information from the Wikipedia API. Augmenting the 
datasets with features such as thermoregulation and habitat 
enhanced the data further. The cross-referencing provided 
context for the numerical data and allowed the comprehensive 
analysis of the present ecological patterns. After loading and 
processing the data from the categorized species, these data-
sets were merged with species with similar groupings, and the 
resulting DataFrame was termed ‘combined_data.’ The merg-
ing process enabled the conduct of analyses spanning multiple 
species.

Data Cleaning and Imputation:
To ensure the quality of the data, missing values were ad-

dressed through strategies such as filling in missing data. The 
forward fill imputation was used to handle missing values in 
the population. This method propagates the most recent ob-
served value forward to replace subsequent missing values, 
which is especially suitable for time-series data. By carrying 
forward the last known population value, the forward fill im-
putation is able to maintain continuity in the dataset without 

introducing completely unrealistic values, making it effective 
for the context.

We chose forward filling for this task to maintain continuity 
for species with many gaps in time-series data, however, the 
method may create bias if earlier values are not representative 
of later trends. Alternative techniques such as linear interpola-
tion or KNN-based imputation were considered, but were not 
implemented due to data sparsity and computational cost. A 
comparative study of imputation methods could be a valuable 
direction for refinement in the future.

This preprocessing was essential as it prepared the data for 
subsequent statistical analyses and applications in machine 
learning. Furthermore, additional features, such as population 
growth rates, averages, and standard deviation, were added. 
These values were calculated for each species in the dataset, 
with G=Pt−Pt−1  represented population growth rate, where 
Pt and Pt-1 represent the population in year t and the previous 
year t-1, respectively. The average population across all avail-
able years was calculated by Pavv=1nii=  , where n is the total 
number of years for which population data is available, and Pi 
is the population in year i. Finally, the standard deviation was 
calculated with the equation:

Feature Engineering and Final Dataset:
Additionally, the data pipeline used feature engineering 

to create new variables based on existing data. For instance, 
calculating derived metrics such as population growth rates, 
averages, and standard deviations from the raw data counts 
enriches the dataset and provides additional context that may 
improve model performance. This was added in the hopes that 
the model’s ability to capture patterns and relationships in the 
data would be enhanced. This approach helps the Random 
Forest model use a more comprehensive set of features, which 
leads to more accurate predictions and insights about species 
populations and ecological relationships.

Ultimately, the data collection and preparation approach, 
which spanned from the initial loading of species data to the 
handling of missing values, created a foundation for further 
analysis using the Random Forest model. At the same time, 
feature engineering enabled us to make more accurate predic-
tions and insights.

�   Methods
Random Forest Model:
The Random Forest model was selected for its ability to 

manage complex, high-dimensional data commonly encoun-
tered in ecological research. Unlike linear regression models, 
which assume linear trends, Random Forest captures non-lin-
ear associations with traits and trends, which is essential for 
ecological data. For example, relationships between environ-
mental factors and species populations are rarely linear and can 
involve intricate interactions that linear models would miss. 
While linear methods may be sufficient in other contexts, the 
complexity of ecological data makes Random Forest better 
suited for predicting population trends.

Figure 1: Overview of our data pipeline, illustrating the steps in data 
collection, preprocessing, and analysis. This pipeline was designed to ensure 
efficient integration of data into the predictive model, enabling reliable 
population trend analysis.
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was executed using GridSearchCV, an approach that evaluates 
a range of different combinations of hyperparameters.

GridSearchCV is especially beneficial when optimizing 
model performance, as it allows for thorough exploration of 
hyperparameters. By specifying a grid of hyperparameters, it 
is able to automate the tuning process, which ensures that all 
potential configurations are considered. It begins with defining 
the parameter grid and continues to employ cross-validation 
to evaluate the model’s performance for each combination of 
parameters. This involves separating the dataset into K sub-
sets, where the model is trained on K-1 folds. This process is 
repeated for every combination of parameters, allowing for 
an accurate assessment of each configuration’s performance. 
Finally, it aggregates the results, calculating the mean perfor-
mance metrics and identifying the best set of hyperparameters.

The tuned hyperparameters included the number of trees, 
maximum tree depth, and minimum samples required to split 
a node. For optimization, the parameter grid specified ranges 
of [100, 200, 300] for tree count, [10, 20, 30] for maximum 
depth, and [2, 5, 10] for minimum samples to split a node. This 
process identified a configuration that maximized predictive 
accuracy while maintaining resistance to overfitting.

Model Evaluation and Metrics:
Following the identification of optimal parameters depicted 

in Table 2, the model with the highest R², a measure of how 
well the model accounts for differences in observed data, was 
evaluated on the test set from the train-test split to evaluate 
its predictive capabilities. Performance metrics such as R² and 
Mean Squared Error (MSE) were calculated. R² is measured 
with R²=SSresSSto, where SSres is the sum of squares of the 
differences between the real and predicted values, and SStot is 
the total sum of squares, or the difference between the actual 
values and the mean of the values.

MSE is measured with Σ(𝑦𝑖−𝑦𝑝𝑟𝑒𝑑)², where n is the num-
ber of observations, 𝑦𝑖 are the actual values, and 𝑦𝑝𝑟𝑒𝑑 are the 
predicted values. Lower MSE values illustrate better model 
performance.

In addition to numerical metrics, a visualization of prediction 
errors was conducted through the generation of a confusion 
matrix, shown in Figure 2. The confusion matrix summarizes 
predictions across multiple categories, with rows representing 
actual categories and columns representing the predicted cat-
egories. The diagonal cells show correct predictions for each 
category, while the cells outside represent misclassifications.

Random Forest achieves this by using an ensemble of de-
cision trees, each trained on random subsets of the data. This 
ensemble approach minimizes overfitting, a common issue 
with single decision trees, and enhances the model's robustness 
to variations in the data. Moreover, Random Forest is resistant 
to outliers, as errors from individual trees tend to offset one 
another when aggregated. These attributes make it highly ef-
fective for analyzing real-world ecological data.

Another key advantage is its interpretability. The feature 
importance metric highlights the traits most influential in 
shaping population trends, enabling targeted conservation 
strategies, a central goal of this study. Although techniques 
like neural networks and support vector machines (SVMs) are 
viable alternatives, they require extensive tuning and often lack 
the interpretability that Random Forest provides. Although 
techniques like neural networks and support vector machines 
(SVMs) are viable alternatives, they require extensive tuning 
and often lack the interpretability that Random Forest pro-
vides. Neural networks are well-suited for identifying patterns 
in large, unstructured datasets, and SVMs excel in high-di-
mensional spaces, but their limitations in transparency make 
them less ideal for this project.

In contrast, Random Forest ideally balances predictive 
power and interpretability for understanding the drivers of 
population trends based on ecological factors. For an analysis 
where the relationships between variables and species popula-
tions are complex and non-linear, Random Forest is the best 
fit. While other techniques may offer benefits in certain con-
texts, the strengths of Random Forest align most closely with 
the goals of this study.

Model Inputs and Feature Selection:
This process enabled the extraction of meaningful insights 

from the data. In this study, the initial step involved select-
ing features and defining the target variable. The features 
included physical characteristics, habitat, population growth 
rate, standard deviation, and population averages, while the 
target variable was population counts. These inputs allowed 
the model to learn the relationships required for accurate pre-
dictions. An 80-20 train-test split ensured sufficient data for 
training and evaluation.

Data Preprocessing and Standardization:
Before fitting the model, features were standardized using 

the StandardScaler from scikit-learn, which scales them to 
have a mean of 0 and a unit variance. It transforms each feature 
x according to the using z=x−μ , where z is the standardized 
value, x is the original value of the feature, is the mean of the 
feature, and σ is the standard deviation of the feature. Using 
the StandardScaler reduced the impact of any discrepancies in 
scale among features.

Hyperparameter Tuning:
The first iteration of the Random Forest Regressor used 100 

trees and was trained on the scaled training dataset. To en-
hance model performance even further, hyperparameter tuning 
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Table 2: 3D table displaying the combinations of hyperparameters used in 
the analysis. The optimal combination found by tuning is bolded for clarity, 
ensuring reproducibility of future results.
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From the Random Forest regressor output, shown in Fig-
ure 3, the species' overall growth rate emerged as the most 
important feature in predicting future populations. It consis-
tently held the highest RIV value compared to the other five 
features, indicating that species with stable or changing pop-
ulation trends are more likely to maintain these trajectories. 
Conservation efforts should prioritize species with declining 
populations, as they are at a higher risk of extinction. The 
standard deviation of populations over the years was then con-
sistently the second most important feature. A higher standard 
deviation suggests greater fluctuations in population numbers, 
potentially signaling vulnerability to environmental changes or 
pressures.

The stronger performance of statistical features is likely 
since they encompass cumulative ecological effects over time. 
Growth rate and standard deviation reflect actual demograph-
ic responses to diverse pressures, such as habitat degradation, 
climate variability, or competition, without needing to explic-
itly model those factors. Physical traits, on the other hand, are 
more general, which means they encompass characteristics 
that may differently influence population trends under specific 
ecological conditions. As a result, while traits like thermoregu-
lation and habitat are biologically meaningful, their predictive 
power is limited without environmental context, explaining 
why statistics outperformed trait-based variables.

In contrast, population growth rate, habitat, and thermoreg-
ulation features showed negligible RIV values, ranging from 
0 to 0.05. This suggests that habitat changes may affect indi-
vidual species rather than causing consistent changes across 
multiple species. The minimal RIV for thermoregulation indi-
cates no significant correlation with future population trends.

The relatively low RIV value for habitat indicates that hab-
itat changes do not consistently correlate with population 
changes across multiple species. Instead, these changes often 
alter species dynamics. This variability complicates the use of 
habitat as a reliable predictor for individual species popula-
tions, as seen in the application of Random Forest Regressor 
models. A relevant example is the extinction of gray wolves 
in Yellowstone National Park. The loss of this apex predator 
caused an unchecked increase in the elk population, which led 
to severe overgrazing. This vegetation loss degraded habitats, 
negatively impacting other species reliant on those ecosystems, 
illustrating the cascading effects of predator-prey dynamics on 
broader ecological systems.

The negligible RIV for thermoregulation indicates that 
population trends are likely shaped by combinations of factors 
rather than broad classifications alone. Simplistic classification 
risks overlooking significant variations in behavioral patterns, 
ecological adaptations, and physiological responses within 
these categories. For example, reptiles and fish may be classi-
fied together based on thermoregulation, but their population 
trends diverge due to significant differences in behavior and 
environmental sensitivities. Reptiles, such as lizards and 
snakes, often regulate body temperature by basking, influenc-
ing their activity and habitat use. Conversely, fish adjust their 
depth to manage temperature but are more vulnerable to wa-
ter quality and temperature fluctuations, which directly affect 

�   Results 
The comparison of thermoregulation type, habitat, diet, re-

productive strategy, and flight capability against statistical data 
such as species growth rate, average population across years, 
and standard deviation revealed minimal correlation with ani-
mal population trends.

The random forest regressor generates a Relative Impor-
tance Value (RIV). Calculated 𝑅𝐼𝑉= Importance      , the RIV 
value represents the importance of each feature to the pre-
dictions made by the model. This model calculates the RIV 
by measuring Gini impurity, which calculates feature impor-
tance and determines the final value. Gini impurity measures 
the likelihood of misclassifying a randomly chosen data point 
if labeled according to the class distribution. A feature’s im-
portance score is calculated based on its ability to decrease 
misclassification and improve decision-making in individual 
trees. In Random Forest, the RIV represents the average con-
tribution of a feature to the reduction in Mean Squared Error 
(MSE) across all decision trees. Each split in the forest evalu-
ates how much it reduces the MSE, and the features that result 
in greater reductions are assigned higher RIVs. The final RIV 
is the average reduction in error attributed to a feature across 
all trees, providing a robust measure of its importance in the 
model.
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Figure 2: Confusion matrix showing the comparison of predicted and actual 
population values, categorized into three groups: Low (L), Medium (S), and 
High (R). This classification provides an alternative assessment of the model's 
performance in predicting population trends. Although correct predictions are 
present, the overall predictive power of the model is quite weak.

Figure 3: Relative Importance Values (RIV) for assessing the significance 
of five physical traits in predicting population trends. The RIV values 
are compared with statistical data to determine which traits most strongly 
correlate with population decline. The figure depicts low values for traits when 
compared to statistical data.
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breeding cycles and health. While reptiles are particularly sus-
ceptible to deforestation and its impact on food sources, fish 
face greater risks from aquatic environmental changes. These 
distinctions illustrate how population trends within thermo-
regulation-based groups can vary significantly. Relying solely 
on thermoregulation categories to assess populations may over-
look critical factors such as competition for resources, predation 
pressures, and other environmental stressors. Species-specific 
traits and their interactions with complex ecological variables 
often provide more accurate insights into population dynamics 
than broad classifications.

Further analysis, however, reveals insights beyond just fea-
ture importance. First, the RIV values for certain features 
alone, such as habitat, do not exclude the possibility of interac-
tions between variables. Although one feature alone may show 
minimal predictive influence, it could be more significant when 
combined with other features. For example, certain species in 
specific habitats may experience population changes due to en-
vironmental or ecological pressures that are not apparent when 
examining these features individually. Random Forest mod-
els can capture such interactions through decision tree splits. 
These splits divide data based on specific features or values, 
helping the model detect patterns. For example, a split could 
divide the data depending on whether the habitat type is “Ma-
rine.” However, understanding these interactions requires more 
dedicated analysis techniques, including interaction effect plots 
or pairwise feature importance metrics, which assess the com-
bined effect of two features. Using these tools could help clarify 
how features work together to influence predictions, which 
would create in-depth insights and likely inform conservation 
strategies that could address multiple factors simultaneously. 
This would provide a more comprehensive understanding of 
population patterns, especially for species that may be in com-
plex environments.

While feature importance values provide interpretability in 
model behavior, we acknowledge their limitations in captur-
ing causal relationships. An ablation study, where models are 
trained by removing features incrementally, was considered but 
not conducted due to the sparsity in our dataset and computa-
tional constraints. Future studies could expand on this study by 
the usage of ablation methods to evaluate feature combinations 
more accurately.

Regarding model accuracy, the stability of feature rankings 
across multiple Random Forest runs suggests consistent RIVs. 
This credibility further emphasizes features such as growth 
rate and average populations as important predictors. However, 
it is important to recognize any limitations in the application 
of RIVs.

Random Forests may favor features with more unique values, 
which could inflate their importance. To mitigate this, tech-
niques like permutation importance can be used, which shuffle 
feature values to assess their true impact on prediction accuracy. 
Shuffling feature values could help in avoiding bias for abnor-
mal values in the dataset, which would otherwise impact the 
importance values of features. From a conservation perspective, 
the findings suggest focusing on species with historically high 
population fluctuations, as the standard deviation indicates. 

These species may be more susceptible to minor environmental 
pressures. The high importance of population growth suggests 
that conservation efforts should target populations with declin-
ing trends, as these are likely to continue without intervention.

�   Discussion 
The interconnectedness of species creates a complex web of 

interactions, making it challenging to discern overall popula-
tion trends. Each species occupies a unique ecological role and 
responds differently to environmental pressures. For example, 
while large herbivores may thrive in the absence of predators, 
competing species or those dependent on vegetation face ad-
verse effects, such as habitat degradation or reduced food 
availability. Understanding whether a species' population is in-
creasing or declining requires a broader ecological context, as 
factors like competition, mutualism, and environmental chang-
es significantly influence responses to habitat shifts.

The inclusion of historical data aimed to establish a base-
line for understanding population trends, but it should not 
dominate the analysis when predicting future changes. The 
primary focus is on analyzing how physical traits, such as ther-
moregulation and habitat, influence species' adaptability and 
survival in dynamic environments. While historical population 
sizes provide a reliable foundation for estimating future sizes, 
they are less informative for identifying changes in population 
trends—the core objective of this study. The results suggest 
that excluding historical data in future iterations of the model 
may enhance its alignment with the study's goals. By focusing 
on the impacts of physical traits and emphasizing small devia-
tions as early indicators for conservation efforts, the model can 
more effectively predict population trends and support target-
ed interventions.

Limitations of  Physical Traits:
Although physical traits certainly influence a species’ ability 

to survive in different conditions, they do not alone account 
for the shaping of population dynamics. For instance, while 
a group of species may have a consistent diet or reproductive 
strategy, such as being herbivorous or laying eggs, other aspects 
of the animals may be extremely varied due to other physical 
traits of the animal or different habitats. In this sense, the rea-
soning behind the low predictive scores for thermoregulation 
is also reflected when measuring the scores of flight capability, 
diet, and ways of birthing offspring. Each of these traits plays a 
role within a broader web of factors that influence population 
trends. For instance, while flight capability is crucial for certain 
species adapting to environmental changes, it does not address 
how populations are impacted by predator-prey dynamics or 
resource availability. Similarly, other traits often interact with 
environmental and ecological factors in ways that minimize 
or alter their individual influence on population trends. Ther-
moregulation affects sensitivity to climate variability, where 
ectothermic species are more susceptible to extreme tem-
peratures. These examples illustrate how the predictive power 
of individual traits can be limited without considering their 
combined effects. Exploring such combinations could reveal 
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hidden vulnerabilities that are not apparent when examining 
traits in isolation, where methods like pairwise interaction 
analysis within Random Forest models could provide deeper 
insight into how physical traits shape population resilience or 
decline. This highlights the need to analyze a more compre-
hensive set of variables, emphasizing interactions among traits 
and environmental factors. Considering these combinations 
can provide a more accurate understanding of population dy-
namics and their broader ecological implications.

Implications:
The findings of this research highlight the importance of 

refining analyses to better understand how physical traits in-
teract with environmental factors and population dynamics. 
Given the complexity of population trends, future studies 
should explore how traits like habitat interact with historical 
population data to improve the accuracy of predictions. Moni-
toring changes in population trends can help identify species at 
risk due to climate change, insights that may not be apparent 
from historical data alone. While historical population data is 
useful for predicting trends in stable conditions, physical traits 
become critical for understanding changes under increasing 
environmental pressures.

Future Research and Model Expansion:
This study also introduced methodological advancements. 

The data processing pipeline effectively managed extensive 
missing values, and trait data were sourced using the Wikipe-
dia API and taxonomic groupings. These developments create 
an infrastructure for further exploration of similar topics, po-
tentially supporting more effective and stronger analyses in 
future studies. Additionally, the flexibility of the Random For-
est model allows for the integration of new features, traits, or 
population data to expand the model’s range. Future research 
could incorporate environmental indicators, such as climate 
change or pollution data, to capture ecological interactions in-
fluencing population trends within specific groupings. The use 
of more detailed subcategories based on alternative or mixed 
physical and behavioral traits could further enhance the preci-
sion of population analyses.

Enhancing the pipeline with automated processes for fea-
ture selection and hyperparameter tuning by using grid search 
or other evolutionary algorithms could also optimize model 
performance as well as prevent the model from overfitting. 
Another potential improvement involves exploring ensemble 
methods, combining Random Forests with models like Dy-
namic Range Models (DRMs) or Individual-Based Models 
(IBMs). These hybrid approaches could better capture over-
all population trends while accounting for specific behavioral 
differences at the individual level. Continued development of 
this framework holds promise for creating more effective pre-
dictive tools. By incorporating advanced methodologies and 
diverse modeling approaches, future research can support more 
accurate analyses, guiding conservation efforts and species pro-
tection initiatives with greater precision.

Real Time Monitoring Applications:
The predictive framework developed in this study could be 

used to support real-time monitoring systems for conservation 
decision making. By using continuously updated population 
data from monitoring programs to feed directly into this mod-
el, population counts processed through the Random Forest 
algorithm would pre-emptively detect population decline 
based on species-specific traits. This would enable conserva-
tion managers to identify species with abnormal declines and 
prioritize interventions before substantial loss occurs. By au-
tomating this process, the model could support a real-time 
alert system for regions or species where consistent population 
tracking is available.

�   Conclusion 
This study assessed the role of physical traits in predicting 

changes in animal populations, focusing on thermoregulation, 
habitat, diet, reproductive strategy, and flight capability. The 
results show that historical population data, including growth 
rate, standard deviation, and average population size, were cru-
cial predictors of population trends. However, physical traits 
provided valuable insight into population changes, where small 
deviations in population trajectories can lead to significant 
ecological shifts. The Random Forest model demonstrated 
that the historical population data effectively predicted trends 
based on past patterns. While physical traits showed lower 
Relative Importance Values (RIVs) individually, their inter-
actions with other environmental and biological factors may 
reveal more complex relationships. For instance, habitat may 
exert a stronger influence on population trends when analyzed 
alongside additional ecological variables, emphasizing the im-
portance of assessing these interactions.

Although historical data is valuable for estimating pop-
ulation levels, the physical traits studied hold promise for 
identifying deviations from ongoing trends. Such deviations, 
even minor ones, can serve as early indicators of larger ecolog-
ical or environmental changes, offering insights into species' 
long-term survival. Predicting changes in population trends re-
quires a broader framework that integrates historical data with 
various physical and ecological factors for a more comprehen-
sive understanding.
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