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ABSTRACT: Systemic lupus erythematosus (SLE) is an incurable chronic autoimmune disease that causes widespread 
inflammation and organ damage. Due to the lack of a single test to diagnose SLE, doctors use multiple general methods to 
diagnose the disease. This study evaluated gene expression in CD16+ monocytes, CD16- monocytes, and CD4+ T lymphocyte 
cells to identify signatures unique to SLE, to improve diagnostic processes. Gene expression profiles from individuals diagnosed 
with SLE and females aged 24-29 controls were obtained from the Gene Expression Omnibus, and 54,675 gene probes were 
compared between healthy and SLE patients. The top five gene probes with increased differential expression between healthy and 
SLE patients were associated with the ATP6V0C, UBA1, TGFB1, STAT1, and NFYC genes. Quantile-quantile plots confirmed 
statistical appropriateness for genetic analysis. Further evaluation determined that the ATP6V0C, UBA1, STAT1, NFYC, and 
TGFB1 genes associated with the CD16- monocyte cell type represent a novel gene expression signature for SLE identification. 
Gene expression ranges were established for these probes, serving as a diagnostic tool for SLE. This tool can detect SLE in a single 
blood sample, which may improve diagnostic outcomes and reduce healthcare costs.  

KEYWORDS: Biomedical and Health Sciences; Genetics and Molecular Biology of Disease; Systemic Lupus Erythematosus; 
Gene Expression Signatures; Transcriptomic Biomarkers. 

� Introduction
Systemic lupus erythematosus (SLE) is an incurable au-

toimmune disease in which the immune system generates 
antibodies that attack the body’s own tissues, causing wide-
spread inflammation and tissue damage.¹ SLE can affect the 
joints, skin, brain, lungs, kidneys, and blood vessels. Poor access 
to health care, late diagnosis, poor effectiveness of treatments, 
and imperfect adherence to therapeutic regimens may increase 
the damaging effects of SLE, resulting in complications and 
an increased risk of death. Between 2010 and 2016, the aver-
age number of deaths per year of US residents where SLE was 
identified as the underlying cause of death was 1,176. During 
the same 7-year period, SLE was recognized as a contributing 
cause of death in an average of 2,061 deaths per year.¹

On average, it takes almost six years for people with SLE to 
be diagnosed with the disease from the time they first notice 
their symptoms.² SLE is known as "the great imitator" because 
its symptoms mimic many other illnesses. SLE symptoms can 
also be unclear, come and go, and change over time. In ad-
dition, SLE is diagnosed far more frequently in females than 
in males, a pattern that reflects a well-documented sex bias in 
both clinical presentation and existing datasets.

Furthermore, based on current resources and findings, it is 
important to note that the diagnosis of SLE currently can-
not solely rely on a single test. Instead, doctors apply various 
methods to discover the presence of the disease. A thorough 
examination of the patient’s medical history focuses on any 
genetic occurrences of SLE or other autoimmune disorders. 
Additionally, a comprehensive physical examination is per-

formed to identify potential indicators such as skin rashes or 
other abnormal signs associated with SLE.³

Blood and urine tests, specifically the antinuclear antibody 
(ANA) test, are commonly used to assess the likelihood of the 
patient’s immune system producing autoantibodies associated 
with SLE. While a positive ANA test is common among SLE 
patients, it does not confirm a SLE diagnosis conclusively. In 
the event of a positive ANA test result, the doctor typically 
orders further tests for antibodies specific to SLE.³

A skin or kidney biopsy, involving the removal of a tissue 
sample for microscopic examination, is sometimes recom-
mended to detect potential signs of an autoimmune disease. 
However, knowing that none of these methods definitively 
determines SLE is crucial. Instead, their primary utility lies 
in excluding other conditions that may be mistaken for SLE. 
Recognizing that these diagnostic approaches do not offer a 
conclusive verdict on whether an individual has SLE is essen-
tial. Instead, they assist healthcare professionals in eliminating 
potential misdiagnoses and narrowing down the possibilities. 
Therefore, the great complexity of SLE diagnosis emphasizes 
the need for ongoing medical evaluation and collaboration be-
tween patients, healthcare providers, and medical researchers. 
SLE and other autoimmune disorders tend to run in fami-
lies, but the inheritance pattern is unclear. People may inherit 
a gene variation that increases or decreases the risk of SLE, 
but in most cases, do not inherit the condition.² If a robust 
gene expression signature is identified for patients with SLE 
or at risk of SLE, this can be used as a diagnostic tool to im-
prove diagnostic patient outcomes. A diagnostic tool that can 
conclusively identify SLE in patients would be novel and signi-
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ficantly impact patients and the health care system. Patients 
would have earlier access to treatments to help control symp-
toms and prevent further health decline. Healthcare costs to 
identify SLE would be substantially lower since many of the 
current testing regimes would not be necessary.

This investigation distinguishes itself from prior studies 
by focusing on the gene expression profiles of CD16− mono-
cytes in systemic lupus erythematosus (SLE), a cell type subset 
that has been less explored in the context of SLE diagnostics. 
While previous research has highlighted the proinflammatory 
role of CD16+ monocytes in SLE pathogenesis, particularly 
their involvement in T-cell activation and B-cell differentia-
tion,⁹ this study uniquely identifies a gene expression signature 
in CD16− monocytes. 

CD4⁺ T cells play a central role in coordinating the adaptive 
immune response. They act as “helper” cells that activate and 
direct other immune cells, including B cells, cytotoxic T cells, 
and macrophages, by secreting cytokines. In the context of sys-
temic lupus erythematosus (SLE), CD4⁺ T cells are critically 
involved in the loss of immune tolerance, which leads to the 
production of autoantibodies. Dysregulated CD4⁺ T cells in 
SLE patients often exhibit abnormal activation, impaired reg-
ulatory function, and excessive help to B cells, leading to the 
formation of pathogenic autoantibody-producing plasma cells. 
Studies have also shown that CD4⁺ T cells in SLE patients 
exhibit altered gene expression patterns linked to interferon 
signaling and pro-inflammatory cytokine production, further 
contributing to tissue damage and systemic inflammation.17

CD16⁺ monocytes, also known as non-classical monocytes, 
are a subset of circulating monocytes that exhibit pro-in-
flammatory properties and are involved in patrolling the 
endothelium. In SLE, CD16⁺ monocytes are found in elevat-
ed numbers and have been implicated in tissue infiltration and 
inflammation. These cells express higher levels of inflammato-
ry cytokines such as TNF-α and IL-1β and contribute to the 
dysregulation of immune responses seen in SLE.18

In contrast, CD16⁻ monocytes, or classical monocytes, are 
primarily involved in phagocytosis, the process by which a 
phagocyte (a type of white blood cell) surrounds and destroys 
foreign substances (such as bacteria) and removes dead cells.10 
These classical monocytes respond to infection and injury. 
While often considered less inflammatory, CD16⁻ monocytes 
are important for understanding early immune activation and 
homeostasis. Interestingly, recent studies suggest that tran-
scriptional reprogramming in these classical monocytes may 
occur early in SLE pathogenesis, even before overt clinical 
symptoms, making them valuable targets for early diagnosis 
and biomarker discovery.19

The purpose of this study was to evaluate gene expression 
in CD16+ monocytes, CD16- monocytes, and CD4+ T lym-
phocyte cells to identify gene expression signatures unique 
to systemic lupus erythematosus (SLE), which may offer an 
approach to improve diagnostic processes and outcomes for 
patients with SLE or at risk of acquiring SLE. Here it was 
investigated whether gene expression differed in CD4+ T cells, 
CD16+/- monocytes between individuals with and without 
SLE.

� Methods
Determine Gene Probe Values: 
Initial research for the project included evaluating available 

gene expression data from various open-source repositories. 
The raw gene probe data chosen for this project were obtained 
from the Gene Expression Omnibus (GEO) hosted by the 
US National Center for Biotechnology Information (NCBI). 
GEO is a public genomics repository meant as an open source 
for scientific research. The datasets obtained from the GEO 
repository and used in this project were records GDS4888 
(CD4+ T lymphocytes), GDS4889 (CD16- monocytes), and 
GDS4890 (CD16+ monocytes).

Gene expression differences between people with and with-
out SLE were determined using microarray analysis. A total of 
50 mL of peripheral blood was collected from each person. For 
CD4+ T lymphocyte cells, this included six people with SLE 
(average age: 29.0±7.6) and four healthy people (average age: 
24.8±0.5). CD16− monocyte cells included four people with 
SLE (average age: 26.5±1.7) and four healthy people (average 
age: 24.8±0.5). For CD16+ monocyte cells, this included four 
people with SLE (average age: 26.5±1.7) and three healthy 
people (average age: 24.7±0.6). All people in the study were 
female. Erythrocytes were lysed in EL buffer, and then gran-
ulocytes were depleted using CD15-conjugated microbeads. 
The CD15-depleted fraction was stained with a CD14-fluo-
rescein isothiocyanate antibody. Using a FACSAria cell sorter, 
the CD4+ T cells, CD16- monocytes, and CD16+ monocytes 
were isolated. After sorting, the cells were lysed with RLT buf-
fer and frozen at -70°C. Total RNA was then isolated using an 
RNeasy mini kit. The generation of cRNA was accomplished 
by sample hybridization using HG-U133 Plus 2.0 arrays and 
scanning. The clinical characteristics of SLE and healthy per-
sons are summarized in Table 1 below.

The microarray data were analyzed through a multi-step 
process. First, data normalization and the generation of cell 
files were conducted using Affymetrix GCOS software. These 
cell files were then analyzed using the BioRetis database to 
perform group-wise comparisons and to filter for differentially 
expressed probe sets. To identify interferon (IFN)-regulated 
transcripts, the differentially expressed probe sets were com-
pared with published reference lists. Finally, hierarchical cluster 
analysis was carried out using Genesis version 1.7.5. This 
comprehensive analysis produced gene probe expression values 

Table 1: Clinical characteristics of the female study participants, including 
CD4+ T lymphocyte cells from six SLE patients and four healthy individuals, 
CD16− monocyte cells from four SLE patients and four healthy individuals, 
and CD16+ monocyte cells from four SLE patients and three healthy 
individuals. 
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that were subsequently used for further investigation in the 
study.16

Identify Statistically Significant Gene Probes: 
Gene probe expression differences were evaluated between 

SLE and healthy samples using a t-test. P-values of <0.0001 
were identified as statistically significant, indicating a mean-
ingful difference in gene expression between the two groups. 
Statistical comparison of the differentially expressed genes 
for the healthy versus the SLE cohort was performed using 
a one-tailed t-test to determine the resultant p-value. The 
value considered to be a statistically significant difference is 
a p-value less than 0.05. Variation in the data, which can af-
fect the p-value calculation, was dealt with by using either a 
heteroscedastic or homoscedastic t-test. Before choosing the 
appropriate t-test, the variance of the data was calculated. The 
standard threshold for choosing a heteroscedastic t-test is 1.5 
or greater.⁴ This meant that a one-sided t-test was more ap-
propriate. All the p-values were recalculated using a one-sided 
t-test. The process of performing the one-sided t-test and
calculating the p-values for differentially expressed genes in-
volved several key steps, as outlined below.

The datasets labeled “GDS4888”, “GDS4889”, and 
“GDS4890” were accessed through the website https://www.
ncbi.nlm.nih.gov/, each representing a different cell type. In 
the "Downloads" box on the right side of the screen, the link 
to download the entire SOFT file was clicked for each of the 
three datasets. Each SOFT file was then opened in Excel after 
being downloaded. A new column titled “Variance Lupus” was 
created in the Excel spreadsheet. The following equation was 
inserted in the cell below: =VAR.S(C4:H4). This calculates 
the variance of the SLE data for that gene probe. A column la-
beled "Variance Healthy" was added beside "Variance Lupus," 
with the equation =VAR.S(G4:I4) inserted for variance cal-
culation. After "Variance Healthy," a column labeled "Ratio" 
was created with the following equation: =IF(N4>O4, N4/O4, 
O4/N4). This equation ensures that if the Variance Lupus is 
greater than the Variance Healthy, the value for Variance Lu-
pus is divided by the Variance Healthy; if the opposite is true, 
Variance Healthy is divided by Variance Lupus. The output 
represents the ratio between the variances of the Healthy and 
Lupus data. Next, a column titled "Homoscedastic T-test" was 
added to conduct the t-test if the variance was less than 1.5. 
The equation =TTEST(C4:H4, I4:L4,1,2) was used to com-
pare the data from C4 to H4 with that from I4 to L4, with "1" 
indicating a one-sided t-test and "2" specifying a homosce-
dastic t-test. A column labeled "Heteroscedastic T-test" was 
created for use if the variance exceeded 1.5. This t-test equa-
tion was similar to that for the homoscedastic t-test, with the 
last number changed to "3" to denote a heteroscedastic t-test. 
Another column, titled "P Value Actual," was created with the 
equation =IF(T4>1.5, W4, V4). If the ratio was greater than 
1.5, the heteroscedastic p-value was selected; otherwise, the 
homoscedastic p-value was chosen. Steps #1 to #11 were re-
peated for each gene probe in each dataset, with each dataset 
preferably placed on separate spreadsheets. Each spreadsheet 
contained over 54,000 rows.

Following this, the gene probes with the lowest p-val-
ues were identified by extracting all p-values, ID_REFs, and 
IDENTIFIERs for each gene probe across the datasets into 
a new Excel spreadsheet for comparison. Using Excel’s Sort 
function, p-values were sorted from smallest to largest to 
identify the smallest values. A new tab was created to filter 
for gene probes with p-values less than 0.001, and duplicates 
were removed using a formula. A combined list of unique gene 
probes was created, and VLOOKUP was used to match p-val-
ues for each gene probe across the datasets. A "Code" column 
was added to identify probes with p-values below 0.001. Data 
from this step were transferred to a new tab where redundant 
values were removed and gene probes were ranked based on 
their p-value significance. The final dataset included the top 
5 gene probes with the lowest p-values, which were ranked 
and organized based on their average p-values across the data-
sets. Line graphs were then created for each of these top gene 
probes, comparing probe values between the healthy and SLE 
groups across the datasets.

Determination of Novel Gene Expression Signatures: 
The top five gene probes were evaluated to identify those 

associated with vital functions, based on findings from current 
genetic research. These probes were selected for their critical 
roles in maintaining essential cellular and physiological pro-
cesses. The next step involved defining a novel gene expression 
signature by identifying the cell type(s) with the lowest p-val-
ues for each selected gene probe. A gene expression signature 
refers to a specific gene, or a set of genes, that shows a strong 
statistical association with Systemic Lupus Erythematosus 
(SLE) and is linked to vital cellular functions within specif-
ic immune cell types. This signature is considered novel if it 
has not been previously described in scientific literature and 
demonstrates unique or previously unreported associations 
with SLE. To confirm novelty, the expression patterns of the 
identified genes were compared to existing publications, en-
suring that the signature represents a new contribution to the 
understanding of SLE pathogenesis.

The three statistical tools used for analysis were QQ plots, 
histograms, and graphical cohort comparison. QQ plots 
assessed the distribution of p-values against a theoretical dis-
tribution, histograms visualized p-value distribution across cell 
types, and graphical analysis compared the differences between 
healthy and SLE cohorts.

The procedure used to create Quantile-Quantile (QQ) plots 
began with downloading and installing Python 3.12.2 (64-
bit) from the official Python website (https://www.python.
org/). For reference, the website https://support.minitab.com/
en-us/minitab/21/integration/python-integration-guide/ex-
ample-qq-plot/  was opened and left on-screen, as it provided 
guidance on how Minitab interfaces with Python to generate 
QQ plots. However, an alternative method proved more effec-
tive for this study. Visual Studio Code was downloaded from 
https://visualstudio.microsoft.com/  and installed following 
the latest instructions on the site. Next, Command Prompt was 
opened, and the command pip install mtbpy numpy matplotlib 
was entered to install the necessary Python module packages. 
Minitab Statistical Software was then downloaded and insta-
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lled via a free trial from https://www.minitab.com/en-us/
products/minitab/free-trial/, with care taken to use the latest 
version and follow the installation instructions. Minitab was 
pinned to the laptop, and the desktop version was launched. 
A zip file from the earlier support site was downloaded and 
unzipped in a designated folder. The file qq_plot.py from 
this archive was opened in Visual Studio Code and served as 
the bridge for Python-Minitab integration. In Minitab, the 
"Open" option was used to load the "Hospital test runs" data 
file, although its content was immediately deleted from the 
worksheet to prepare for new input. Relevant data was cop-
ied and pasted below the worksheet, and the Command Line 
was used to run the script with the customizable command 
PYSC “qq_plot.py” “Hospital A” “Hospital B”. After clicking 
the "Run" button, QQ plots were generated and displayed. 
These plots could be copied by right-clicking and selecting 
"Copy Image." Additional functions were available through 
this interface. The Minitab-Python Interface code is given as 
a supplementary file to this journal. In addition to QQ plots, 
histograms were used to determine the distribution of p-values 
across the three immune cell types. Graphical comparisons be-
tween healthy and SLE cohorts were also conducted to assess 
whether the data differences trended positively or negatively.

Develop Gene Probe Expression Ranges for Diagnostic 
Tool: 

This section describes the methods to identify the diag-
nostic tool’s most significant gene probes and associated cell 
types. It also describes the methods used to develop gene probe 
expression ranges for the most important gene probes that 
would result in a p-value less than 1x10-⁴. These gene probe 
expression ranges have the potential to serve as a novel diag-
nostic tool for assessing individuals for the presence of SLE, or 
potentially identifying a genetic predisposition to developing 
SLE in the future. However, it is important to note that this 
application remains hypothetical and would require extensive 
clinical validation and large-scale studies before it could be 
implemented in practice.

The raw and p-value data for the 4889 (CD16-) datasets 
were opened in an Excel spreadsheet, and the gene probes used 
in the diagnostic tool were identified. Data for these probes 
were copied into a new spreadsheet, where a "Value" column 
was added. The p-value equation was modified to incorporate 
the "Value" column in the SLE portion of the p-value calcula-
tion. This process involved incrementally increasing the value 
in the "Value" column and generating a new p-value for each 
SLE value. The gene probe data, Value quantity, and p-value 
were then transferred to a Data Chart spreadsheet, where a 
"Criteria for P-Value" column was added with a value of 0.001, 
and a "Code" column was created with an equation to identify 
probes with p-values below 0.001. A line chart was created 
with gene probe values on the x-axis and a maximum p-value 
of 0.003. The range of gene probe values resulting in a p-val-
ue of 0.001 was considered statistically significant, and these 
steps were repeated for all evaluated gene probes.

In conclusion, regarding all methodology, the data obtained 
from the Gene Expression Omnibus (GEO) represented a full 
gene expression profile (54,675 probes) for healthy persons 

and persons with systemic lupus erythematosus (SLE). The 
data obtained measured differences in expression in 3 differ-
ent cell types, which were CD16+ monocyte, CD16- monocyte, 
and CD4+ T lymphocyte cells for each cohort. T-test p-values 
(p-value) were calculated using Microsoft Excel for all gene 
probes in all three cell types. Variation in the data was account-
ed for by choosing either a heteroscedastic or homoscedastic 
t-test based on a variance test result threshold of 1.5. The vari-
ance calculation was performed using Microsoft Excel.

If interested in an in-depth methodology, a supplemental 
file is added to this journal. 
� Results and Discussion
Determine Gene Probe Values: 
Due to the large amount of data generated during this study, 

including the raw and p-value data tables in this report was 
impossible. The raw data tables, including associated p-values, 
were labeled Table 2A, Table 2B, and Table 2C, one for each 
cell type. Due to the large data tables, it was impossible to 
include them in this publication.

Identify Statistically Significant Gene Probes
The most significant differences between the SLE and 

healthy cohort gene expression across monocyte and CD4+ T 
cell subtypes were identified for the genes ATP6V0C, TGFB1, 
STAT1, NFYC, and UBA1. The lowest p-values for these genes 
ranged from 1.9x10-⁴ to 7.3x10-⁷. These p-values are very low 
and demonstrate that the difference in gene expression be-
tween the SLE and healthy cohorts is statistically significant. 

Scatterplots showing probe values for the diagnosed healthy 
and SLE cohorts, including associated p-values, for each of the 
top five gene probes and the three cell types were prepared. See 
Figures 1 to 3 below.

Table 2: Lowest p values by cell type across different cell types, with each 
gene linked to its respective gene probe identifier (ID_REF). The table 
highlights the comparison between healthy individuals and those with SLE, 
revealing five gene probes with p-values ranging from 1.9 x 10-4 to 7.3 x 10-7, 
indicating statistically significant differences in gene expression. 

Figure 1: The top five gene probes regarding the CD4+ T Lymphocyte cell 
type, healthy vs. SLE patients gene expression. 
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Determination of Novel Gene Expression Signature
1) Identify Gene Probes Related to Vital Functions: 
The top five gene probes with differential expression, AT-

P6V0C, UBA1, TGFB1, NFYC, and STAT1, were further 
evaluated to determine how they affect the human body and 
known interactions with other diseases. 

ATP6V0C encodes a subunit of the vacuolar H+-ATPase 
(V-ATPase), a proton pump responsible for acidifying intra-
cellular compartments such as lysosomes and endosomes. This 
gene plays a crucial role in maintaining cellular pH balance, 
which is essential for processes like endocytosis, protein deg-
radation, and the proper functioning of organelles. The proper 
functioning of V-ATPase, and by extension ATP6V0C, is vital 
for cellular homeostasis and vesicular trafficking.⁵

UBA1 encodes the ubiquitin-activating enzyme 1, which 
is imperative for the ubiquitination process. UBA1 activates 
ubiquitin molecules by attaching them to proteins, marking 
them for various fates, including degradation, alteration in ac-
tivity, or changes in cellular location. This process is central 
to regulating cellular processes such as the cell cycle, stress 
responses, and protein turnover, ensuring that proteins are ap-
propriately controlled within the cell.⁷

TGFB1 encodes Transforming Growth Factor Beta 1 
(TGF-β1), a multifunctional cytokine that plays a pivotal 
role in regulating cell growth, differentiation, and immune 
function. TGF-β1 is involved in tissue repair and fibrosis by 
promoting extracellular matrix production and influencing 
immune responses. It also plays a significant role in immune 
suppression, helping regulate inflammation and maintain im-
mune homeostasis, which is important for tissue homeostasis 
and wound healing.12

NFYC (Nuclear Transcription Factor Y Subunit C) is a tran-
scriptional regulator that binds to the CAAT box sequence 
in the promoter regions of various eukaryotic genes. While it 
does not produce RNA directly, it assists in regulating 

Figure 2: The top five gene probes regarding the CD16+ Monocyte cell 
type healthy vs. SLE patients gene expression. 

Figure 3: The top five gene probes regarding the CD16- Monocyte cell 
type healthy vs. SLE patients gene expression. 

transcription, the process of copying DNA into RNA, by 
RNA polymerase activity. This regulation can increase or de-
crease RNA transcript levels, thereby affecting the expression 
of target genes.13

STAT1 is another gene that encodes a transcription factor 
involved in the immune response, particularly in activating 
genes triggered by interferon, signaling proteins that help the 
body fight infections and cancer. Interferon is a natural sub-
stance produced in the body by white blood cells that help the 
body’s immune system fight infection and other diseases, such 
as cancer.⁶ The protein encoded by STAT1 immune system is 
involved in transmitting signals within cells, particularly in re-
sponse to interferons, which are signaling proteins that play 
a key role in the immune response to viral infections. When 
interferons bind to their receptors on the surface of a cell, they 
activate STAT1 and cause it to move into the cell’s nucleus.14

All five genes are on the list of priority gene probes for fur-
ther evaluation.

2) Define Novel Gene Expression Signature: 
The p-value data for the top three gene probes were evaluat-

ed to determine whether one or more cell types would be used 
as a diagnostic tool. 

In this analysis, the CD16- monocyte cell type was select-
ed not solely based on having the lowest p-values, but rather 
because the p-values reflected consistent and statistically ro-
bust differences across all three gene probes. While p-values 
indicate the likelihood that observed differences are not due 
to random variation, they do not capture the magnitude of 
expression change. To address this, complementary analyses 
assessing effect sizes (e.g., fold-change) could be performed 
to evaluate the biological relevance of the differences. Howev-
er, to establish a statistically sound candidate cell type in this 
initial assessment, statistical significance was prioritized to en-
sure that any observed differences were reliable across all gene 
probes.

Further research identified a list of the current known genes 
associated with SLE. These genes are shown in Table 3. The 
three genes identified in this study, ATP6V0C, UBA1, TGFB1, 
UBA1, and STAT1, are not included in Table 3. Therefore, the 
ATP6V0C, UBA1, TGFB1, UBA1, and STAT1 genes associ-
ated with the CD16- monocyte cell type represent a unique 
and novel gene expression signature for identifying SLE in 
patients.

Table 3: Genes Associated with SLE⁸. However, the three 
genes identified in this study,  ATP6V0C, UBA1, NFYC, 
STAT1, and TGFB1, are not included, highlighting their 
unique and novel role in gene expression signatures for identi-
fying SLE in patients with CD16- monocyte cell types.
Table 1: The top five gene probes regarding the CD16+ Monocyte cell type 
healthy vs. SLE patients gene expression. 
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Table 3 above from the Journal of Leukocyte Biology (2012) 
presents a comprehensive overview of over 50 genes statistical-
ly associated with SLE. Each entry includes the gene’s name, 
chromosomal location, odds ratio indicating the strength of 
association with SLE, p-value demonstrating statistical signif-
icance, and the specific populations in which the gene variant 
was studied: European (EU), African American (AA), Asian 
(AS), and Hispanic American (HA). An odds ratio great-
er than 1 reflects an increased risk of developing SLE, while 
values below 1 suggest a potential protective effect. The chart 
was selected for analysis to benchmark newly identified genes, 
ATP6V0C, UBA1, STAT1, NFYC, and TGFB1, against exist-
ing SLE-associated genes. The absence of these genes in Table 
3 supports their novelty and strengthens the claim that they 
represent a unique gene expression signature. This comparison 
validates the identification of previously unreported genetic 
markers in CD16- monocyte cells as well.

3) Final Statistical Analysis:
A) QQ Plots: 
When reporting probe values for genes, there are only ex-

amples of genes where the value is higher in SLE patients 
compared to healthy patients. Generating a Q-Q plot is a 
common way to showcase that the test has a proper signifi-
cance distribution. The results of the QQ plots, as shown in 
Figures 4 to 11, determine that the data is statistically appro-
priate for analysis.

Figure 4: Quantile-Quantile (QQ) 
plot graph for gene probe values 
regarding the probe associated with 
the ATP6V0C gene, for the Healthy 
cohort, with respect to the CD16- 
monocyte cell type. cell type, healthy 
vs. SLE patients gene expression. 

Figure 5: Quantile-Quantile (QQ) 
plot graph for gene probe values 
regarding the probe associated with 
the ATP6V0C gene, for the Healthy 
cohort, with respect to the CD16- 
monocyte cell type. cell type, healthy 
vs. SLE patients gene expression. 

Figure 6: Quantile-Quantile plot 
graph for gene probe values regarding 
the probe associated with the TGFB1 
gene, for the Healthy cohort, with 
respect to the CD16- monocyte. 

Figure 7: Quantile-Quantile plot 
graph for gene probe values regarding 
the probe associated with the TGFB1 
gene, for the SLE cohort, with respect 
to the CD16- monocyte. 

Figure 8: Quantile-Quantile plot 
graph for gene probe values regarding 
the probe associated with the UBA1 
gene, for the Healthy cohort, with 
respect to the CD16- monocyte. 

Figure 9: Quantile-Quantile plot 
graph for gene probe values regarding 
the probe associated with the UBA1 
gene, for the SLE cohort, with respect 
to the CD16- monocyte. 

Figure 10: Quantile-Quantile (QQ) 
plot graph for gene probe values 
regarding the probe associated with 
the NFYC gene, for the Healthy 
cohort, with respect to the CD16- 
monocyte cell type. 

Figure 11: Quantile-Quantile (QQ) 
plot graph for gene probe values 
regarding the probe associated with 
the NFYC gene, for the SLE cohort, 
with respect to the CD16- monocyte 
cell type. 
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A standard test to determine if genetic data is statistically 
appropriate and follows a normal distribution is a test called a 
Quantile-Quantile (QQ) plot. A QQ plot plots a distribution’s 
observed quantiles versus the ideal distribution. Where quan-
tiles are regular, equally spaced intervals of a random variable 
divide the random variable into units of equal distribution.11 
Above are the QQ plots for the healthy and SLE cohorts as-
sociated with the top three gene probes evaluated. 

B) Histograms:
Histograms were created to visualize the distribution of 

p-values derived from differential gene expression analyses
between healthy controls and SLE patients. While p-values
alone do not reflect the magnitude or biological relevance
of gene regulation, they remain a useful tool for identifying
statistically significant patterns within large-scale expression
datasets. The raw gene probe data in Table 1 are shown in Fig-
ures 12, 13, and 14, as frequency histograms for each cell type, 
CD16- monocyte, CD16+ monocyte, and CD4+ T lympho-
cyte. These histograms show the number of times the p-values
for a specific range of values occur in the dataset. These his-
tograms show relatively high p-values in the very low p-value
ranges. This is normal for gene probe data and indicates that
there are outliers that have statistically significant p-values.

Figure 12: Quantile-Quantile (QQ) 
plot graph for gene probe values 
regarding the probe associated with 
the STAT1 gene, for the Healthy 
cohort, with respect to the CD16- 
monocyte cell type. 

Figure 13: Quantile-Quantile (QQ) 
plot graph for gene probe values 
regarding the probe associated with 
the STAT1 gene, for the SLE cohort, 
with respect to the CD16- monocyte 
cell type. 

Figure 14: Histogram of p-values for CD4+ lymphocyte dataset. The 
dataset represented full gene probe analysis results (54,675 probes x 1 cell 
type CD4+ T Lymphocyte₎ for healthy persons and persons with systemic 
lupus erythematosus (SLE). 

C) Healthy versus SLE Charts:
It was noted previously that all the line graphs in Figures 1 

to 3 showed gene probe data for the SLE cohort, which was 
higher in value than the healthy cohort. Two gene probe scat-
terplots, Figure 17, show that there are gene probes for which 
the healthy cohort has higher values than the SLE cohort. 
Many more gene probes with this trend demonstrate a variety 
in the data. Each bar is the expression value in an individual 
T cell.

Figure 15: Histogram of p-values for CD16- monocyte dataset. The dataset 
represented full gene probe analysis results (54,675 probes x 1 cell type 
CD16- Monocyte) for healthy persons and persons with systemic lupus 
erythematosus (SLE). 

Figure 16: Histogram of p-values for CD16+ monocyte dataset. The dataset 
represented full gene probe analysis results (54,675 probes x 1 cell type 
CD16+ Monocyte) for healthy persons and persons with systemic lupus 
erythematosus (SLE). 

Figure 17: Two Gene Prove Values in Healthy vs. SLE Patients to 
Demonstrate Different Cohort Positioning. 
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4. Develop Gene Probe Expression Ranges for Diagnostic 
Tool: 

Two gene probe values were identified, resulting in a p-value 
of 1x10-⁴ for each of the top three gene probes from the CD16- 
monocyte cell dataset. These two gene probe values represent 
the highest and lowest gene probe expressions, resulting in 
a statistically significant difference between the healthy and 
SLE cohorts, based on minimum p-value criteria of 1x10-⁴. 
Charts were prepared for each of the top three gene probes to 
show this data. See Figures 18 to 22. 

To note, expression ranges are method-dependent, with dif-
ferent gene expression platforms (e.g., microarray, RNA-seq, 
qPCR) potentially producing varying absolute values. In this 
analysis, ranges were derived specifically based on the meth-
odology employed to ensure internal consistency. The analysis 
was performed to provide a structured framework for inter-
preting expression differences and selecting the most suitable 
candidate cell type.

Figure 18: UBA1 Gene Probe Values for p = 1x10-4. Displays the 
statistically significant UBA1 gene probe range (p<0.0001) for detecting the 
presence of SLE using CD16- monocyte cells. Specifically, the UBA1 gene 
probe range is between 376 and 699. 

Figure 19: ATP6V0C Gene Probe Values for p = 1x10-4. Displays the 
statistically significant ATP6V0C gene probe range (p<0.0001) for detecting 
the presence of SLE using CD16- monocyte cells. Specifically, the ATP6V0C 
gene probe range is between 785 and 1312. 

Figure 20: TGFB1 Gene Probe Values for p = 1x10-4. This figure provides 
a comprehensive overview of the statistically significant TGFB1 gene probe 
range (p<0.0001) for detecting SLE through the analysis of CD16- monocyte 
cells, with gene probe values spanning from 420 to 721. 

Figure 21: NFYC Gene Probe Values for p = 1x10-4. Displays the 
statistically significant NFYC gene probe range (p<0.0001) for detecting the 
presence of SLE using CD16- monocyte cells. Specifically, the NFYC gene 
probe range is between 254 and 320. 

Figure 22: STAT1 Gene Probe Values for p = 1x10-4. Displays the 
statistically significant STAT1 gene probe range (p<0.0001) for detecting the 
presence of SLE using CD16- monocyte cells. Specifically, the STAT1 gene 
probe range is between 4004 and 4017. 
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The graph above shows “abnormality” in comparison to the 
other graphs due to the variance set to 1.5. Below is a graph 
for STAT1 with Variance disregarded, and therefore, the ho-
moscedastic t-test is only regarded as the final p-value to 
analyze. This will remove the “jagged edges” visually displayed. 

� Conclusion
The following are the significant conclusions from this 

study.
The study determined a statistical difference in the gene 

probe values for genes ATP6V0C, UBA1, NFYC, STAT1, and 
TGFB1 between healthy people and people with SLE. The 
t-test p-values (p-value) from this analysis for these genes
were less than 1 x 10-4 for all cell types in the study, CD16-
monocyte, CD16+ monocyte, and CD4+ T lymphocyte. 

Furthermore, it was determined that the CD16- mono-
cyte cell type is the best indicator of statistical difference in 
gene probe expression in this study for SLE in the ATP6V0C, 
UBA1, NFYC, STAT1, and TGFB1 genes. The p-values from 
this analysis ranged between 1.4 x 10-⁶ to 7.3 x 10-⁷.

The study results were compared to a list of known genes as-
sociated with SLE. It was determined that the gene probes in 
this study, related to the ATP6V0C, UBA1, NFYC, STAT1, and 
TGFB1 genes and the CD16- monocyte cell type, represent a 
novel gene expression signature for the identification of SLE.

The criteria for a novel diagnostic test method were devel-
oped to detect the presence of SLE in patients. The criteria are 
based on the high and low gene probe expression values iden-
tified in this study as statistically significant in SLE patients. 
Using these high and low gene probe values that define the 
gene probe expression ranges that are statistically significant in 
SLE patients a diagnostic test method could be developed to 
test patients for the presence of SLE. First, a blood sample will 
be obtained from a patient. The CD16- monocyte cells would 
be isolated from the blood sample. Then, the CD16- monocyte 
cells would be analyzed for the three gene probes defined in 
this study and associated with the ATP6V0C, UBA1, NFYC, 
STAT1, and TGFB1 genes. This diagnostic tool would be a

Figure 23: STAT1 Gene Probe Values for p = 1x10-4. P-values are produced 
through only the homoscedastic t-test. Displays the statistically significant 
STAT1 gene probe range (p<0.0001) for detecting the presence of SLE using 
CD16- monocyte cells. Specifically, the STAT1 gene probe range is between 
3478 and 4017. 

quick and relatively simple way to determine if a person has 
SLE. Introducing this innovative diagnostic method could 
transform the lives of SLE patients globally. It quickly and ac-
curately detects SLE, so patients can receive timely treatment, 
vastly improving their quality of life and potentially saving 
lives. This test could ease the financial burden on healthcare 
systems by simplifying diagnosis, allowing resources to be re-
directed toward patient support and research into new SLE 
treatments and a possible cure.

The sample size for this study was relatively small. Further 
analysis with additional persons in the SLE and healthy co-
horts would improve the study’s statistical power and increase 
confidence in rejecting the null hypothesis. Further long-term 
research, including persons who are asymptomatic for SLE, is 
required to determine if this test can also determine whether a 
healthy person is genetically predisposed to SLE in the future. 
This is a very interesting study area since I am unaware of any 
quantitative methods for determining a person’s predisposition 
to SLE.  
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