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ABSTRACT: The repair of electronic appliances is often hindered by the lack of available circuit schematics, leading to
unnecessary waste and environmental harm. While right-to-repair legislation has improved access to repair services, circuit-
level diagnostics remain challenging, contributing significantly to electronic waste (e-waste). This paper hypothesizes that circuit
schematics can be generated from PCB images to assist in repair and introduces Appliance X-ray, an Al-driven system designed for
this purpose. Inspired by medical X-rays that help doctors diagnose patients, Appliance X-ray extracts and reconstructs schematics
from PCB images, making circuit structures more interpretable. The system employs a YOLOV5 convolutional neural network
(CNN) to detect circuit components, followed by k-nearest neighbors regression to predict missing elements based on inferred
circuit functionality. A novel graph convolutional network (GCN) is then used to analyze component relationships to reconstruct
the schematic. Additionally, human-in-the-loop feedback refines model predictions, enhancing future iterations. Experimental
results demonstrate the effectiveness of this dual CNN-GCN model in identifying components and inferring connections, while
also contributing a novel, scalable dataset of circuit schematic graphs derived from both real and synthetic data to support future
research in circuit analysis and repair automation.

KEYWORDS: Robotics and Intelligent Machines, Machine Learning, Inference Model, Regression, Graph Convolutional

Network.

B Introduction

Initial Problem:

Around 62 million metric tons of e-waste are generated
globally each year, of which small appliances contribute sig-
nificantly. Such e-waste contains toxic substances like mercury,
lead, and cadmium, which can leach into the environment
and pose serious risks to human health, including neurolog-
ical damage and cancer.! Small appliances could be repaired
or refurbished rather than discarded, especially after the im-
plementation of right-to-repair legislation such as California
SB-244.This bill grants consumers the right to service-related
literature and parts by mandating appliance producers design
appliances with repairable features and release appliance-level
designs.? However, waste trends continue as many applianc-
es remain in landfills. Previous attempts at containing waste
(landfills) will eventually fail due to the finite space on a finite
planet where humanity resides. Extrapolating the status quo of
appliance waste leads to worrying thoughts about the dwin-
dling space of humanity’s only home.

Partial Solution:

Appliance repair is a promising avenue in reducing appliance
waste. This method not only directly reduces waste in landfills
but also provides valuable vocational training opportunities
and lowers appliance costs.! In finding the motivations behind
choosing repair for consumers and professionals, Torca-Adell
et al. found that while appliance failure was common for appli-
ances in domestic and professional use, habits among this base
trended towards replacement instead of repair as an alternative.
Torca-Adell ez al. identify that the economic nonviability of re-

pair is a significant factor in consumers not choosing repair over
replacement.® Such nonviability can be attributed to the com-
plex structures within the circuitry of appliances, increasing the
difficulty of repair and thereby indirectly increasing time spent
and costs. Failing to gauge the complexity of a circuit can also
result in bodily harm to repair technicians due to the presence
of high-voltage components. Without a proper avenue for de-
termining the composition of a circuit and its connections, the
opportunity cost of purchasing another device often outweighs
a lengthy, dangerous, and potentially impossible repair.

Companies such as iFixIt have identified this lack of accessi-
ble repair as a potential market. This company specifically has
released a multitude of appliance-level schematics and their
corresponding repair guides, improving the probability of re-
pair and efficiency of fixing an appliance.

Further Problem:

However, main control board failure and various other cir-
cuit-related breakages within appliances, while common, are
unable to be fixed with appliance-level repairs due to the dif-
ficulty in managing the complex connections within a circuit
without knowledge of its interior. Even in appliances docu-
mented by the iFixIt platform, where circuits are available, the
common recommendation for circuit-level failures is the aban-
donment of repair — a situation that becomes more inevitable
when the model of the appliance is unknown as well.

Past attempts have been made at improving the quality and
efficiency of circuit-level repair based on technological solu-
tions with text input. Notable examples of such Al-based
circuit design assistants include Flux Al, which focuses on
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assisting circuit design through large language model (LLM)
features.* As the focus of such tools is primarily oriented to-
wards circuit defect identification, the scale of their work is
confined to manufacturing quality assessment and not the
schematic generation used for repair. However, current pro-
grams rely solely on text input to generate circuits and cannot
accept visual input, limiting their utility in the generation of
desired circuit schematics from a photo. This input structure
prevents large benefits in appliance repair when visual and not
text data is available to the technician. Existing technologies for
recreating circuit schematics from Gunay and Koseoglu that
utilized a CNN (R-CNN) to determine circuit components
from an image were able to do so, yet did not determine PCB
top-layer and discrete connections.” The presence of discrete
connections in PCB boards causes purely visual methods to be
unable to reconstruct a circuit diagram from an image, due to
connections being hidden under multiple layers of opaque ma-
terial. Therefore, the creation of a system with the capability
of improving the quality and likelihood of circuit-level repairs
by providing repair schematics fills a useful niche, continuing
successful trends in appliance repair.

Goal:

It is hypothesized that the most direct implementation of
this goal would involve the creation of a circuit schematic to
identify possible points of failure unknown in previous sys-
tems. Creating a circuit’s schematic from a photo, the most
likely available information is a step towards the final goal
of eliminating appliance waste by resolving circuit-level re-
pairs previously untouchable with traditional technology. The
success of this program will be gauged by the accuracy and
precision of identifying circuit components and whether or not
it is able to identify circuit-level connections.

B Methods
Proposed Method:
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Figure 1: The general workflow of the CNN-GCN system, which takes in an
image to output it as a schematic for repair. A photo of an appliance circuit is
taken, where the components are individually identified with a CNN and used
to infer the general purpose of the circuit. Afterward, “missing” components
based on the circuit’s purpose are added to the list of circuits, with the likely
connections between components identified with a GCN system and sent
to the user for a final evaluation. The user identifies the components and
connections considered correct, which can then be reinput into the component
and connection inference models for future training. Icons from PowerPoint,
Author, and Flaticon.

The finalized method, demonstrated in Figure 1, aimed
at creating a circuit schematic as an output to an input of a
circuit image revolved around a three-step process of circuit

component identification, inferring circuit purpose, and infer-
ring component connections. The program accepts an input of
a circuit image, which is then processed by a YOLOv5 CNN
model to identify circuit components. The component type
and position are identified, with its centroid indicated on a
coordinate plot using the Matplotlib and Networkx libraries.
With this plot completed, a matching algorithm finds the
closest matching circuit in a dataset of circuit schematics to
the plot of components identified. The purpose (e.g., toaster)
of the closest matching circuit is attached to the current plot
of components as its inferred purpose, with key missing com-
ponents inserted into the existing patchwork of component
nodes. A human-in-the-loop now has the option to confirm or
deny insertions by the matching algorithm. Afterward,a GCN
trained on various circuit connections infers the connections
between individual circuit components based on their type and
proximity. The finalized schematic is then output to a human-
in-the-loop, who selects the connections amongst the list of
inferred connections.

CNN:

For this project, Thoma ez al’s ground truth CGHD circuit
schematic dataset and Nayak's PCB component dataset were
consulted.®” Thoma ez al’s dataset consisted of 1152 schemat-
ics of 144 circuits, with individual electrical components as
well as important connections like junction points indicated
with a bounding box to represent their size and position. This
dataset was used to train CNN models to identify circuit com-
ponents among the forty-five given classes. Similarly, Nayak’s
dataset of circuit images was also used to train CNNs in the
identification of circuit components, albeit using real circuit
images. Nayak’s dataset has more direct utility in the identi-
fication of circuit components and was used as the training
dataset during the CNN model creation.

The results of the YOLOv5 CNN circuit detection model
were produced after training with the Nayak circuit dataset.
The confusion matrix, F1 score, precision and other metrics
are shown below.
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Figure 2: The confusion matrix of the YOLOVS circuit component
identification model. True positives are shown in the left top-to-bottom
diagonal, and all others on the sides. The number in each box represents the
proportion of tests that fit the above description. While a false negative rate
is high for nearly all components, these false negatives are not the result of
systematic bias but components being misclassified as the circuit background.
This enables future work focused on inference models and matching to infer
the existence of these “missing” components to be done. Information created
from a train/valid/test split of 106/35/10 images. From the author.

The confusion matrix, Figure 2, shows that out of all com-
ponents, the highest probability of its classification is as part of
the background. Out of all components, the IC has the highest
probability of being classified correctly, at 31%. The most com-
mon misclassification for each component is being identified
as a portion of the background (not being classified).
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Figure 3: The Fl-confidence of the YOLOV5 network after training,
a measure of predictive performance. Trends in the Fl-confidence curve
show an acceptable rate of predictive performance, especially considering
how misclassifications are mostly due to classifying components as part of
the background. Each individual line shows the F1 score (how well data is
classified, with a higher score being better) at a certain confidence level (how
confident the model is in what a component is). Each individual line represents
an individual component, while the blue line represents the aggregate F1
confidence of all components. The F1 staying consistently under 0.4 mirrors
the information acquired from Figure 3’s confusion matrix. From the author.
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Figure 4: The precision-confidence curve of the YOLOVS5 component
identification network during training, used to measure true positive rate.
The precision stabilizes at around 0.95 after 0.8 confidence, showing a high
rate of stability in the model’s predictions. Precision is a measure of variation,
with a higher precision meaning less variation. Each individual line represents
how precisely a component is classified with set confidence, with the blue line
representing the aggregate of all components. Source: author.
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Figure 5: A list of metrics regarding the usability of the YOLOV5 component
identification model. The x-axis is the number of epochs. Train/box_loss, train/
obj_loss, and train/cls_loss describe the loss function of the model during
training and are measures of the model’s difference between predictions and
the ground truth. Val/box_loss, obj_loss, and cls_loss describe the validation
model’s loss and the results produced by the model when used on the
validation dataset split from the training data. Lastly, the metric parameters
precision and recall describe ratios of true positives to total predictions or
relevant items. mAP is the mean average precision, or the average precision of
the model when identifying all classes of components. With more training, it
is expected that loss decreases and mean average precision increases, with the
box (position) loss, classification loss, and mean average precision all following
the set pattern. However, object loss increases with training, going against the
expected pattern. More research is required when examining object loss.

Overall, Figure 3 demonstrates a negative linear relationship
with the mean aggregate F1 score of the model and confi-
dence, while Figure 4 demonstrates a logarithmic relationship
of the mean aggregate model precision and confidence. Figure
5 demonstrates that the YOLOv5 model can stabilize the pre-
cision of its predictions at around 0.4 and reduce the loss to
around 0.1.
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Figure 6: An example output of the GCN algorithm after an input of a list
of components. Each node represents a component, while each line represents
a likely connection between them. The set of blue connections on the left is
inferred from a standard GCN, while the predicted edges on the right are
inferred after a cosine similarity filtering algorithm. Such a list of nodes and
connections can be input into a computer-aided design tool to output the list
in human-readable schematic form. There are significantly fewer connections
inferred after the cosine similarity filtering algorithm, showing potential in its
usage in terms of saving time while maintaining accurate predictions. From
the author.

The node maps displayed in Figure 6 are the outputs of the
GCN model after an input of a list of nodes. Each node rep-
resents an identified component, while each line represents a
connection between two components. The map on the left is
the result of a standard GCN inference, while the map on the
right is the result of a filtered set of connections after a cosine
similarity function. The cosine similarity filtering significant-
ly reduced the total number of inferred connections, with the
raised threshold removing many extraneous connections from
certain nodes (e.g., 14). Specifically, components like node 14
vary greatly in connections due to it being a misclassified I1C,
confusing the GCN model. After the usage of a cosine sim-
ilarity filtering model, the low confidence of all connections
with node 14, due to its misclassified nature, leads to no ex-
pected connections. The lack of connections that should not
exist is an indication that the model is functioning properly.
These example maps point to the trade-off between inference
count and precision when setting thresholds for confident
connection inference.

B Result and Discussion

Component Identif ication:

The usage of a CNN model in identifying circuit compo-
nents was viewed as the most direct alternative to combined
identification models reliant on stable diffusion or GAN, due
to its prevalence in similar alternative identification processes
(e.g., facial recognition), as well as Gunay and Koseoglu’s work
in proving the efficiency of identifying circuit components
with an R-CNN.’> For this reason, the mature YOLO series
of CNN models, specifically YOLOvS5, was chosen to identify
circuit components in the final iteration of this project for its
versatility and accuracy. The Nayak dataset of circuit images
was fed into the YOLOvV5 model via the Roboflow platform
and showed acceptable accuracy. However, one disadvantage of
using the Nayak dataset for training appliance circuit recogni-
tion is its composition. While the Nayak dataset is composed
primarily of circuits with surface-mount devices (SMDs) and
ICs with multiple layers (discrete components), common ap-

pliance circuits are usually single-layered PCBs with few/no
discrete components. This leads to a difference in the training
dataset and the type of circuit the system is supposed to iden-
tify.

Preliminary testing has shown that this composition has a
slight negative impact on the identification of components in
appliance circuits and could be a point of future research.

A k-nearest-neighbors (kNN) regression algorithm would
be able to identify potential missing components in the pre-
dicted position of the input circuit, based on an inferred
purpose of the component list. Past research by Goyal ez al.
has proven that such kNN methods are effective in similar use
cases.” The kNN method is currently a successful example of
inserting missing components, although alternative methods,
including a direct component list comparison as well as al-
ternative weighting within the kNN, are being assessed. The
matching program works as a complement to the connection
inference system, as a minor difference in circuit component
composition could mean deviations from a general template
in terms of connections, despite having the same general pur-
pose. This leads to a potential for confusion in the matching
algorithm if it is responsible for inferring a circuit’s purpose,
missing components, and potential connections at once. A
human-in-the-loop system could increase the accuracy of the
matching program. Users will confirm or deny the inferred cir-
cuit’s purpose and missing components, and send them back
to the matching program for training in future iterations. Syn-
thetic data of circuits could also be generated to increase the
amount of training data available to both the component and
connection determination programs.

Connection Inference:

Circuit boards often have discrete connections due to their
multilayered structure, making visual detection of connec-
tions impossible. The workaround to this limitation found in
pure-visual systems proposed is a novel GCN-based approach,
a research first (to the best of the author’s knowledge). This
system would be trained with datasets of circuits involving the
types of nodes and their corresponding connections. Unlike
previous approaches, GCN systems can deliver probabilistic
calculations of each circuit’s component-level connections due
to the usage of a probabilistic neural circuit (PNC). Following
normalization by a leaky ReL.U algorithm, components with
sufficiently high confidence levels are sent to the user for final
inspection. This final human-in-the-loop phase reduces the
impact of misidentified connections by leaving final decision
choices to the user. The use of a human-in-the-loop system
could also allow for negative inferences (least likely connec-
tions) to be identified and fed back into the model to improve
future iterations, while also allowing for decision responsibili-
ties to be left to the user as an independent agent.
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Figure 7: The vector dot product formula. This gives a score that can
measure the likelihood of circuit connections when the GCN represents each
component and its connections to other components as a vector. Source: Math
Insight.!

Representing each component as a multi-dimensional vec-
tor, displayed in Figure 7, is the operating principle behind
the GCN. The GCN is first trained using data, including the
connections between each component. After the training, the
GCN accepts an input of a list of circuit components, embed-
ding the vector representation of connections for each node.
Out of the n choose two connections possible in n compo-
nents, and the dot-product of each component is calculated.
If the dot product of the connection is over a set threshold
of 0.5 (1 is most likely, O is least likely), the connection is in-
ferred as a possible connection by the GCN. By utilizing this
dot-product threshold algorithm, a mathematical model of
gauging uncertainty is developed, forming a quantitative gauge
of an inference’s probability. This operating principle is the
same for many other Al use cases, including Retrieval-Aug-
mented Generative (RAG) models,'* for the improvement of
overall accuracy. The GCN used for this project operates with
a nine-dimensional vector initially, reducing the complexity
of the multi-dimensional vectors required if no component
pre-processing is done.

The creation of a “net” component prevents the concen-
tration of multiple disconnected power sources or alternative
signals connected to different pins on the same component
from converging on the same point, increasing the accuracy
of the inference model. Lastly, the presence of a human-in-
the-loop not only prevents a significant impact of erroneous
identifications and connections but also provides the potential
to increase the limited training data of this model to improve
future iterations. Every time a user uses the system, an input
of novel circuit data, as well as a schematic, made from the
user’s selections of connections from a list of suggestions, will
be generated. Such data could be added to the training dataset
for the sake of reinforcement learning.

This design implements a variety of methods to increase the
accuracy of the inference model. Firstly, the implementation of
the similarity matching model is done to make up for inevitable
misidentification by CNN. The complex structure of circuits,
coupled with the substantial number of components present,
makes the perfect identification of all components difficult.
The similarity matching model makes up for this imperfection
by ensuring that key components are inserted properly into the
circuit schematic, even if not properly identified by the CNN.

A human-in-the-loop can also prevent erroneous insertions
from being made.

Despite the capabilities of the GCN system, the wide range
of connections provides a wide range of confidence for each
one. This required all connection confidences to be normalized
using the sigmoid function, with a threshold for determining
a connection either set manually or as the mean confidence
of all confidence values. The sigmoid function can remove
most variances in confidence values; however, the data pro-
duced has a strong left skew and results in high confidence
for all expected connections. This skew may be the result of
the vector representation of connections only having nine di-
mensions, while previous implementations had thousands of
dimensions, leading to unnaturally high levels of confidence.
Such a distribution makes the true confidence threshold hard
to set, with the current manual confidence of 0.99999 being
chosen as a heuristic value. Human-in-the-loop corrections
are likely to improve the current model by lowering variances
through more training data; however, the sigmoid function is
the current necessary stopgap before then. Future work will
likely involve changing the sigmoid function to another for the
sake of more normalized confidence values.

B Conclusion

This CNN-GCN system shows potential in both the iden-
tification of circuit components and circuit connections as a
probing study. The model can identify circuit components,
with missing key components filled in through inference by
a similarity matching algorithm. The inference-based GCN
system used to infer component-level connections is also
promising in detecting erroneous and unlikely connections.
Lastly, this project creates a novel method in the uncommon
practice of PCB to schematic translation as circuits are usually
created from schematics.
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