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ABSTRACT: The repair of electronic appliances is often hindered by the lack of available circuit schematics, leading to 
unnecessary waste and environmental harm. While right-to-repair legislation has improved access to repair services, circuit-
level diagnostics remain challenging, contributing significantly to electronic waste (e-waste). This paper hypothesizes that circuit 
schematics can be generated from PCB images to assist in repair and introduces Appliance X-ray, an AI-driven system designed for 
this purpose. Inspired by medical X-rays that help doctors diagnose patients, Appliance X-ray extracts and reconstructs schematics 
from PCB images, making circuit structures more interpretable. The system employs a YOLOv5 convolutional neural network 
(CNN) to detect circuit components, followed by k-nearest neighbors regression to predict missing elements based on inferred 
circuit functionality. A novel graph convolutional network (GCN) is then used to analyze component relationships to reconstruct 
the schematic. Additionally, human-in-the-loop feedback refines model predictions, enhancing future iterations. Experimental 
results demonstrate the effectiveness of this dual CNN-GCN model in identifying components and inferring connections, while 
also contributing a novel, scalable dataset of circuit schematic graphs derived from both real and synthetic data to support future 
research in circuit analysis and repair automation. 

KEYWORDS: Robotics and Intelligent Machines, Machine Learning, Inference Model, Regression, Graph Convolutional 
Network. 

�   Introduction
Initial Problem:
Around 62 million metric tons of e-waste are generated 

globally each year, of which small appliances contribute sig-
nificantly. Such e-waste contains toxic substances like mercury, 
lead, and cadmium, which can leach into the environment 
and pose serious risks to human health, including neurolog-
ical damage and cancer.1 Small appliances could be repaired 
or refurbished rather than discarded, especially after the im-
plementation of right-to-repair legislation such as California 
SB-244. This bill grants consumers the right to service-related 
literature and parts by mandating appliance producers design 
appliances with repairable features and release appliance-level 
designs.2 However, waste trends continue as many applianc-
es remain in landfills. Previous attempts at containing waste 
(landfills) will eventually fail due to the finite space on a finite 
planet where humanity resides. Extrapolating the status quo of 
appliance waste leads to worrying thoughts about the dwin-
dling space of humanity’s only home.

Partial Solution:
Appliance repair is a promising avenue in reducing appliance 

waste. This method not only directly reduces waste in landfills 
but also provides valuable vocational training opportunities 
and lowers appliance costs.1 In finding the motivations behind 
choosing repair for consumers and professionals, Torca-Adell 
et al. found that while appliance failure was common for appli-
ances in domestic and professional use, habits among this base 
trended towards replacement instead of repair as an alternative. 
Torca-Adell et al. identify that the economic nonviability of re-

pair is a significant factor in consumers not choosing repair over 
replacement.3 Such nonviability can be attributed to the com-
plex structures within the circuitry of appliances, increasing the 
difficulty of repair and thereby indirectly increasing time spent 
and costs. Failing to gauge the complexity of a circuit can also 
result in bodily harm to repair technicians due to the presence 
of high-voltage components. Without a proper avenue for de-
termining the composition of a circuit and its connections, the 
opportunity cost of purchasing another device often outweighs 
a lengthy, dangerous, and potentially impossible repair.

Companies such as iFixIt have identified this lack of accessi-
ble repair as a potential market. This company specifically has 
released a multitude of appliance-level schematics and their 
corresponding repair guides, improving the  probability of re-
pair and efficiency of fixing an appliance.

Further Problem:
However, main control board failure and various other cir-

cuit-related breakages within appliances, while common, are 
unable to be fixed with appliance-level repairs due to the dif-
ficulty in managing the complex connections within a circuit 
without knowledge of its interior. Even in appliances docu-
mented by the iFixIt platform, where circuits are available, the 
common recommendation for circuit-level failures is the aban-
donment of repair – a situation that becomes more inevitable 
when the model of the appliance is unknown as well.

Past attempts have been made at improving the quality and 
efficiency of circuit-level repair based on technological solu-
tions with text input. Notable examples of such AI-based 
circuit design assistants include Flux AI, which focuses on 
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assisting circuit design through large language model (LLM) 
features.4 As the focus of such tools is primarily oriented to-
wards circuit defect identification, the scale of their work is 
confined to manufacturing quality assessment and not the 
schematic generation used for repair. However, current pro-
grams rely solely on text input to generate circuits and cannot 
accept visual input, limiting their utility in the generation of 
desired circuit schematics from a photo. This input structure 
prevents large benefits in appliance repair when visual and not 
text data is available to the technician. Existing technologies for 
recreating circuit schematics from Gunay and Koseoglu that 
utilized a CNN (R-CNN) to determine circuit components 
from an image were able to do so, yet did not determine PCB 
top-layer and discrete connections.5 The presence of discrete 
connections in PCB boards causes purely visual methods to be 
unable to reconstruct a circuit diagram from an image, due to 
connections being hidden under multiple layers of opaque ma-
terial. Therefore, the creation of a system with the capability 
of improving the quality and likelihood of circuit-level repairs 
by providing repair schematics fills a useful niche, continuing 
successful trends in appliance repair.

Goal:
It is hypothesized that the most direct implementation of 

this goal would involve the creation of a circuit schematic to 
identify possible points of failure unknown in previous sys-
tems. Creating a circuit’s schematic from a photo, the most 
likely available information is a step towards the final goal 
of eliminating appliance waste by resolving circuit-level re-
pairs previously untouchable with traditional technology. The 
success of this program will be gauged by the accuracy and 
precision of identifying circuit components and whether or not 
it is able to identify circuit-level connections.

�   Methods
Proposed Method:

The finalized method, demonstrated in Figure 1, aimed 
at creating a circuit schematic as an output to an input of a 
circuit image revolved around a three-step process of circuit 

component identification, inferring circuit purpose, and infer-
ring component connections. The program accepts an input of 
a circuit image, which is then processed by a YOLOv5 CNN 
model to identify circuit components. The component type 
and position are identified, with its centroid indicated on a 
coordinate plot using the Matplotlib and Networkx libraries. 
With this plot completed, a matching algorithm finds the 
closest matching circuit in a dataset of circuit schematics to 
the plot of components identified. The purpose (e.g., toaster) 
of the closest matching circuit is attached to the current plot 
of components as its inferred purpose, with key missing com-
ponents inserted into the existing patchwork of component 
nodes. A human-in-the-loop now has the option to confirm or 
deny insertions by the matching algorithm. Afterward, a GCN 
trained on various circuit connections infers the connections 
between individual circuit components based on their type and 
proximity. The finalized schematic is then output to a human-
in-the-loop, who selects the connections amongst the list of 
inferred connections.

CNN:
For this project, Thoma et al.’s ground truth CGHD circuit 

schematic dataset and Nayak’s PCB component dataset were 
consulted.6,7 Thoma et al.’s dataset consisted of 1152 schemat-
ics of 144 circuits, with individual electrical components as 
well as important connections like junction points indicated 
with a bounding box to represent their size and position. This 
dataset was used to train CNN models to identify circuit com-
ponents among the forty-five given classes. Similarly, Nayak’s 
dataset of circuit images was also used to train CNNs in the 
identification of circuit components, albeit using real circuit 
images. Nayak’s dataset has more direct utility in the identi-
fication of circuit components and was used as the training 
dataset during the CNN model creation.

The results of the YOLOv5 CNN circuit detection model 
were produced after training with the Nayak circuit dataset. 
The confusion matrix, F1 score, precision and other metrics 
are shown below.
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Figure 1: The general workflow of the CNN-GCN system, which takes in an 
image to output it as a schematic for repair. A photo of an appliance circuit is 
taken, where the components are individually identified with a CNN and used 
to infer the general purpose of the circuit. Afterward, “missing” components 
based on the circuit’s purpose are added to the list of circuits, with the likely 
connections between components identified with a GCN system and sent 
to the user for a final evaluation. The user identifies the components and 
connections considered correct, which can then be reinput into the component 
and connection inference models for future training. Icons from PowerPoint, 
Author, and Flaticon.
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The confusion matrix, Figure 2, shows that out of all com-
ponents, the highest probability of its classification is as part of 
the background. Out of all components, the IC has the highest 
probability of being classified correctly, at 31%. The most com-
mon misclassification for each component is being identified 
as a portion of the background (not being classified).

Overall, Figure 3 demonstrates a negative linear relationship 
with the mean aggregate F1 score of the model and confi-
dence, while Figure 4 demonstrates a logarithmic relationship 
of the mean aggregate model precision and confidence. Figure 
5 demonstrates that the YOLOv5 model can stabilize the pre-
cision of its predictions at around 0.4 and reduce the loss to 
around 0.1.

Figure 2: The confusion matrix of the YOLOv5 circuit component 
identification model. True positives are shown in the left top-to-bottom 
diagonal, and all others on the sides. The number in each box represents the 
proportion of tests that fit the above description. While a false negative rate 
is high for nearly all components, these false negatives are not the result of 
systematic bias but components being misclassified as the circuit background. 
This enables future work focused on inference models and matching to infer 
the existence of these “missing” components to be done. Information created 
from a train/valid/test split of 106/35/10 images. From the author.

Figure 3: The F1-confidence of the YOLOv5 network after training, 
a measure of predictive performance. Trends in the F1-confidence curve 
show an acceptable rate of predictive performance, especially considering 
how misclassifications are mostly due to classifying components as part of 
the background. Each individual line shows the F1 score (how well data is 
classified, with a higher score being better) at a certain confidence level (how 
confident the model is in what a component is). Each individual line represents 
an individual component, while the blue line represents the aggregate F1 
confidence of all components. The F1 staying consistently under 0.4 mirrors 
the information acquired from Figure 3’s confusion matrix. From the author.

Figure 4: The precision-confidence curve of the YOLOv5 component 
identification network during training, used to measure true positive rate. 
The precision stabilizes at around 0.95 after 0.8 confidence, showing a high 
rate of stability in the model’s predictions. Precision is a measure of variation, 
with a higher precision meaning less variation. Each individual line represents 
how precisely a component is classified with set confidence, with the blue line 
representing the aggregate of all components. Source: author.

Figure 5: A list of metrics regarding the usability of the YOLOv5 component 
identification model. The x-axis is the number of epochs. Train/box_loss, train/
obj_loss, and train/cls_loss describe the loss function of the model during 
training and are measures of the model’s difference between predictions and 
the ground truth. Val/box_loss, obj_loss, and cls_loss describe the validation 
model’s loss and the results produced by the model when used on the 
validation dataset split from the training data. Lastly, the metric parameters 
precision and recall describe ratios of true positives to total predictions or 
relevant items. mAP is the mean average precision, or the average precision of 
the model when identifying all classes of components. With more training, it 
is expected that loss decreases and mean average precision increases, with the 
box (position) loss, classification loss, and mean average precision all following 
the set pattern. However, object loss increases with training, going against the 
expected pattern. More research is required when examining object loss.
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pliance circuits are usually single-layered PCBs with few/no 
discrete components. This leads to a difference in the training 
dataset and the type of circuit the system is supposed to iden-
tify.

Preliminary testing has shown that this composition has a 
slight negative impact on the identification of components in 
appliance circuits and could be a point of future research.

A k-nearest-neighbors (kNN) regression algorithm would 
be able to identify potential missing components in the pre-
dicted position of the input circuit, based on an inferred 
purpose of the component list. Past research by Goyal et al. 
has proven that such kNN methods are effective in similar use 
cases.9 The kNN method is currently a successful example of 
inserting missing components, although alternative methods, 
including a direct component list comparison as well as al-
ternative weighting within the kNN, are being assessed. The 
matching program works as a complement to the connection 
inference system, as a minor difference in circuit component 
composition could mean deviations from a general template 
in terms of connections, despite having the same general pur-
pose. This leads to a potential for confusion in the matching 
algorithm if it is responsible for inferring a circuit’s purpose, 
missing components, and potential connections at once. A 
human-in-the-loop system could increase the accuracy of the 
matching program. Users will confirm or deny the inferred cir-
cuit’s purpose and missing components, and send them back 
to the matching program for training in future iterations. Syn-
thetic data of circuits could also be generated to increase the 
amount of training data available to both the component and 
connection determination programs.

Connection Inference:
Circuit boards often have discrete connections due to their 

multilayered structure, making visual detection of connec-
tions impossible. The workaround to this limitation found in 
pure-visual systems proposed is a novel GCN-based approach, 
a research first (to the best of the author’s knowledge). This 
system would be trained with datasets of circuits involving the 
types of nodes and their corresponding connections. Unlike 
previous approaches, GCN systems can deliver probabilistic 
calculations of each circuit’s component-level connections due 
to the usage of a probabilistic neural circuit (PNC). Following 
normalization by a leaky ReLU algorithm, components with 
sufficiently high confidence levels are sent to the user for final 
inspection. This final human-in-the-loop phase reduces the 
impact of misidentified connections by leaving final decision 
choices to the user. The use of a human-in-the-loop system 
could also allow for negative inferences (least likely connec-
tions) to be identified and fed back into the model to improve 
future iterations, while also allowing for decision responsibili-
ties to be left to the user as an independent agent.

GCN:

The node maps displayed in Figure 6 are the outputs of the 
GCN model after an input of a list of nodes. Each node rep-
resents an identified component, while each line represents a 
connection between two components. The map on the left is 
the result of a standard GCN inference, while the map on the 
right is the result of a filtered set of connections after a cosine 
similarity function. The cosine similarity filtering significant-
ly reduced the total number of inferred connections, with the 
raised threshold removing many extraneous connections from 
certain nodes (e.g., 14). Specifically, components like node 14 
vary greatly in connections due to it being a misclassified IC, 
confusing the GCN model. After the usage of a cosine sim-
ilarity filtering model, the low confidence of all connections 
with node 14, due to its misclassified nature, leads to no ex-
pected connections. The lack of connections that should not 
exist is an indication that the model is functioning properly. 
These example maps point to the trade-off between inference 
count and precision when setting thresholds for confident 
connection inference.

�   Result and Discussion 
Component Identif ication:
The usage of a CNN model in identifying circuit compo-

nents was viewed as the most direct alternative to combined 
identification models reliant on stable diffusion or GAN, due 
to its prevalence in similar alternative identification processes 
(e.g., facial recognition), as well as Gunay and Koseoglu’s work 
in proving the efficiency of identifying circuit components 
with an R-CNN.5 For this reason, the mature YOLO series 
of CNN models, specifically YOLOv5, was chosen to identify 
circuit components in the final iteration of this project for its 
versatility and accuracy. The Nayak dataset of circuit images 
was fed into the YOLOv5 model via the Roboflow platform 
and showed acceptable accuracy. However, one disadvantage of 
using the Nayak dataset for training appliance circuit recogni-
tion is its composition. While the Nayak dataset is composed 
primarily of circuits with surface-mount devices (SMDs) and 
ICs with multiple layers (discrete components), common ap-
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Figure 6: An example output of the GCN algorithm after an input of a list 
of components. Each node represents a component, while each line represents 
a likely connection between them. The set of blue connections on the left is 
inferred from a standard GCN, while the predicted edges on the right are 
inferred after a cosine similarity filtering algorithm. Such a list of nodes and 
connections can be input into a computer-aided design tool to output the list 
in human-readable schematic form. There are significantly fewer connections 
inferred after the cosine similarity filtering algorithm, showing potential in its 
usage in terms of saving time while maintaining accurate predictions. From 
the author.
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A human-in-the-loop can also prevent erroneous insertions 
from being made.

Despite the capabilities of the GCN system, the wide range 
of connections provides a wide range of confidence for each 
one. This required all connection confidences to be normalized 
using the sigmoid function, with a threshold for determining 
a connection either set manually or as the mean confidence 
of all confidence values. The sigmoid function can remove 
most variances in confidence values; however, the data pro-
duced has a strong left skew and results in high confidence 
for all expected connections. This skew may be the result of 
the vector representation of connections only having nine di-
mensions, while previous implementations had thousands of 
dimensions, leading to unnaturally high levels of confidence. 
Such a distribution makes the true confidence threshold hard 
to set, with the current manual confidence of 0.99999 being 
chosen as a heuristic value. Human-in-the-loop corrections 
are likely to improve the current model by lowering variances 
through more training data; however, the sigmoid function is 
the current necessary stopgap before then. Future work will 
likely involve changing the sigmoid function to another for the 
sake of more normalized confidence values.

�   Conclusion 
This CNN-GCN system shows potential in both the iden-

tification of circuit components and circuit connections as a 
probing study. The model can identify circuit components, 
with missing key components filled in through inference by 
a similarity matching algorithm. The inference-based GCN 
system used to infer component-level connections is also 
promising in detecting erroneous and unlikely connections. 
Lastly, this project creates a novel method in the uncommon 
practice of PCB to schematic translation as circuits are usually 
created from schematics.
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component and its connections to other components as a vector. Source: Math 
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