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ABSTRACT: Simulating realistic physics in video games often involves mathematical approximations to optimize
performance. Limited computational power forces game developers to simplify physics simulations, as real-time updates require
many calculations each frame. In the case of networked multiplayer games, the physical limitations of data transmission introduce
additional performance-degrading factors like network lag. This paper analyzes common numerical methods for single-player
game physics, including Euler’s methods and Verlet integration, highlighted for their widespread use and illustrative trade-ofts in
accuracy and computational efficiency. A subsequent section discusses techniques employed in network-based multiplayer games
and how game developers overcome data transmission limitations. These techniques are demonstrated through simulations to
explain different lag compensation mechanisms. Finally, we discuss the results and the game contexts where these techniques are
applicable.
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B Introduction

Realistic physics in video games makes interactions feel
natural and believable, reducing inconsistencies that could
disrupt gameplay. The effectiveness of video game animation
hinges on smooth renditions of visuals. This rendition rate
for a human visual system is between 30 and 60 frames per
second.! All game animations must be computed, composed,
and rendered in a frame interval. Even with advances in dis-
play systems, game developers tend to target a wide range of
computing platforms with different capabilities. This strin-
gent time frame necessitates the utilization of computational
optimizations and approximations in single-player games. To
balance performance, game developers and physics engine
developers often prioritize certain aspects, sometimes at the
expense of realistic physics. Network-based multiplayer games
create additional challenges because of the physical limitations
of the data transmission and additional queueing delays im-
posed by the data networks.? Other sources of delay can arise
from wireless connections and delay from peripheral interfaces
like keyboards and mice. In addition to rendering challenges,
the integrity and correctness of the game come into play. This
paper surveys various techniques for resolving the identified is-
sues and demonstrates different scenarios through simulations.
It discusses where some of these techniques are employed and
how game developers tend to work around the limitations of
network physics.

® Kinematics and Numerical Techniques

In physics, we encounter problems in kinematics that com-
pute a final position at the end of an interval. In video games
and simulations, game inputs are sampled periodically, and
simulations run in repeated intervals, giving the impression
of continuous motion updates. Closed-form/Analytical solu-

tions exist for the most basic situations. Advanced physical
phenomena need solutions to complex integrals for which it is
extremely hard to arrive at a closed-form solution. Numerical
Integration is a fundamental technique used in game physics
to simulate the motion of objects over time.? It allows game de-
velopers to approximate solutions to differential equations that
describe the physical laws governing the game objects. These
techniques help us simulate the continuous behavior of the
objects using discrete steps. Games utilize these techniques in
small time steps to compute velocity, acceleration, and position.
They effectively predict what happens at the end of every time
step, generating an impression of continuous motion. A typical
time step for 30 frames/second is 33ms (1/30th of a second).
In practice, the time step used for computation aligns with the
refresh interval of the game rendering.’

Given the use of time steps, consider the fundamental 1D
kinematics equations:

Uy =V, +a, At
S, =5 +v, At

Here, v,,,1 is the velocity of the object in the (7 + 1)#5 frame,
v, is the velocity in the previous frame (n£5 frame), a,, is the
acceleration of the object in the nth frame, and Az is the time
step between the frames. Similarly, s,,,; and s, denote the dis-
placements in the corresponding frames. We know from our
first course in calculus that acceleration = dv/dt (rate of change
of velocity in an interval) and velocity = ds/dt (rate of change
of displacement in the interval). Analytically computing these
would involve finding derivatives of these functions. Numeri-
cal integration takes an iterative approach by computing these
variables repeatedly in very small intervals.
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Euler s Methods:

The above set of numerical calculations is called Explicit
Euler’s integration.* It gives a simple set of equations that
allows us to compute velocity and position for each displayed
frame. This method is computationally inexpensive, as output
variables are calculated in a straightforward manner. It gives
accurate results as long as there are no significant variations in
the variables in a short span of time. A C programming code
snippet for Explicit Euler’s integration is shown below.

#include <stdio.h>

floatt=0.0;

float dt = 0.033; // timestep

float velocity = 0.0f; // initial velocity

float displacement = 0.0f; / initial displacement
float acceleration = 10.0f;

int main(int arge, char** argy)

{

/I compute for a journey time of 5 seconds

while (t<=5.0)

{
printf("t = %f, velocity = %f, displacement = %f\n", t, velocity, displacement);
velocity = velocity + acceleration * dt;
displacement = displacement + velocity * dt;
t+=dt;

}

}

Figure 1: Euler’s explicit method. Here is a simple snippet of code
demonstrating how Euler’s Explicit Integration works on computers. It uses
a timestep of 5 seconds to compute velocity and displacement at each frame.

The computation in Figure 1 is discrete in nature, and the
rendered movements may look jerky depending on how fre-
quently the velocity and displacement variables are updated
and the visuals are rendered. Below is a sample output for two
different values of timestep (dt).

t=0.000000, velocity = 0.000000, displacement = 0.000000
t=10.500000, velocity = 5.000000, displacement = 2.500000
t=1.000000, velocity = 10.000000, displacement = 7.500000
t=1.500000, velocity = 15.000000, displacement = 15.000000
t=2.000000, velocity = 20.000000, displacement = 25.000000
t=2.500000, velocity = 25.000000, displacement = 37.500000
t=3.000000, velocity = 30.000000, displacement = 52.500000
t=3.500000, velocity = 35.000000, displacement = 70.000000
t=4.000000, velocity = 40.000000, displacement = 90.000000
t=4.500000, velocity = 45.000000, displacement = 112.500000
t=15.000000, velocity = 50.000000, displacement = 137.500000

Figure 2: Sample output for timestep (dt)= 0.5 seconds. These are the
results when running the loop in Figure 1 for a timestep of 0.5 seconds. At 3
seconds, the velocity is 30 m/s and the displacement is 52.5 m.

t=0.000000, velocity = 0.000000, displacement = 0.000000

t =0.300000, velocity = 3.000000, displacement = 0.900000

t =0.600000, velocity = 6.000000, displacement = 2.700000
t=0.900000, velocity = 9.000000, displacement = 5.400000
t=1.200000, velocity = 12.000000, displacement = 9.000000
t=1.500000, velocity = 15.000000, displacement = 13.500000
t = 1.800000, velocity = 18.000000, displacement = 18.900000
t=2.100000, velocity = 21.000000, displacement = 25.200001
t=2.400000, velocity = 24.000000, displacement = 32.400002
t=2.700000, velocity = 27.000000, displacement = 40.500000
t=3.000000, velocity = 30.000000, displacement = 49.500000
t = 3.300000, velocity = 33.000000, displacement = 59.400002
t = 3.600000, velocity = 36.000000, displacement = 70.200005
t=3.900000, velocity = 39.000000, displacement = 81.900009
t = 4.200000, velocity = 42.000000, displacement = 94.500008
t=4.500000, velocity = 45.000000, displacement = 108.000008
t=4.800000, velocity = 48.000000, displacement = 122.400009

Figure 3: Sample output for timestep (dt)= 0.3 seconds. These are the
results when running the loop in Figure 1 for a timestep of 0.3 seconds. At 3
seconds, the velocity is 30 m/s and the displacement is 49.5 m.

We have more intermediate velocity and displacement val-
ues if we decrease our integration interval (dt) for a given
journey. We can observe (from the figures above) that as dt
decreases (from 0.5s to 0.3s) for a given timestamp, the com-
puted velocity remains the same while the displacement drifts.
Our computation for displacement is an approximation that
assumes velocity is constant over dt. In reality, velocity changes
over the interval dt as acceleration is not zero.

Timestep (dt) (s) Timestamp (s) Velocity (m/s) Displacement (m)
.00 3.00

0.500 3 52.00
0.300 3.00 3.00 49.00
0.100 3.00 3.00 46.00
0.033 3.00 3.00 45.58

Figure 4: Euler’s Explicit Displacements (for t = 3s). The summary of the
highlighted data in Figures 2 and 3 are presented in this table. It displays
velocity and displacement at t=3s for 4 different timesteps.

The closed-form value from kinematics is:
S = vyt + 12at*= 0.5 % 10 * 3 % 3 = 45m for (v,= 0,4t = 3s,a = 10m/s?)

As seen in Figure 4, if we decrease dt to a much smaller
value, our computation approaches the expected value (45m).
Running the computations for a very long time accumulates
significant errors, especially at higher values of dt. A very low
value of dt is desirable, but it makes the computations prohib-
itively expensive and is rarely used in current physics engines.
When acceleration is no longer a constant, Euler’s Explicit
method fails again, as it does not account for another varying
value over time.

Euler’s implicit integration method takes a different ap-
proach to dealing with this issue. It uses the first derivative
and evaluates it at the next time step. The following equations
include the necessary changes.

Upil = Uy + Ayaq At
=5, + U, At

n+l
These equations rely on knowing the future value of the ac-
celeration (i.e., a,,1). Approximating a future value could be
done with mathematical techniques. However, these equations
are costly and prohibitive for a game engine that is respon-
sible for many updates over the frame interval.* As a result,
even though the Implicit Euler Integration method gives more
accurate results, it is not widely used in game simulation. A
hybrid and practical approach to the problem comes from Eu-
ler’s semi-implicit integration.

U, =V, +a, At
§ =5, +0,.q At

n+l

It computes the acceleration at the current fimestep and ve-
locity in the subsequent time step. This method provides a
computationally easy integration with fewer errors than the
explicit method. Euler’s semi-implicit method that uses the
nth frame’s acceleration to calculate the (n + 1)z frame's ve-
locity, which is then used to compute the object's new position.
This eliminates the computationally expensive part (calculat-
ing a,,;) of Euler’s implicit. It also minimizes Euler’s explicit
integration inaccuracies by using v,,,; instead of v,, to compute
position.

Even Euler’s semi-implicit method can lead to error because
we use a rounded value in each timestep.

More specifically, we use our value of a, to calculate v,,4
and use this value once again to calculate s,,,;. Therefore, after
many iterations, the error produced could still deviate from the
true value, posing a problem for those who want to code ex-
tremely accurate simulations.* One second-order method that
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computes velocity differently is called Verlet Integration. In-
stead of Euler’s integration techniques that find velocity and
position, Verlet’s method finds position straight from the ac-
celeration.” Computing acceleration needs a second derivative.
Starting from Euler’s equations, we can arrive at

Spi1 = Syt 0,4t + 1/2a,t?
The velocity could be computed from:
Uy = ($,=5,-1) [ At
The equations could be easily combined to obtain:
Spy1 = 28,—8,_1 + 12a,*

Although this algorithm is straightforward and has low er-
ror, we must use further approximations to find velocity. One
advantage of Verlet integration is reversibility.” We could com-
pute positions and velocities in reverse, which could be useful
for game replays.

Euler’s semi-implicit method performs fine if acceleration
is constant in a given timestep. However, higher-order meth-
ods may yield even more accurate calculations that are rarely
necessary in video game simulations. Games like Grand Theft
Auto, Red Dead Redemption, and The Witcher series use
physics engines that often employ Euler's method for simulat-
ing various physical phenomena.

m Collisions and Approximations

Collisions are key elements in many video games. Some
examples of collisions are when a game object or character col-
lides with a surface or terrain, a bullet collides with an object,
or a character bumps into a wall. A collision is declared when
two bodies intersect or the distance between them falls below
a certain threshold.

Game characters and objects are modeled using simple
geometric shapes called bounding volumes. These shapes
approximate the object's actual geometry, making collision de-
tection more efficient. Some common models are:

1. Axis Aligned Bounding Box (AABB) - rectangular box
aligned with the world axis.®

2. Sphere - sphere in which the object is assumed to be en-
closed. Efficient for collision checks, but overestimates the
shape of the object.

3. Oriented Bounding Box (OBB) - rectangular box aligned
with the object's orientation. It is a more complex, but also
accurate method.®

Object AABB
Object OBB

Figure 5: Bounding boxes. This diagram simplifies how AABB and
OBB bounding boxes work, using a rectangle as the object. With AABB,
the bounding box is aligned with the x and y axes, overestimating the area
bounded. The OBB aligns the box to the rectangle’s tilted orientation and
therefore perfectly matches its shape.

Simple geometries and numerical methods introduce errors
in detecting collisions. It is common to experience incorrect
collisions in games. Sometimes, collisions (hits) are registered
when we feel there is no actual contact; other times, collisions
are registered at a slightly off location. Dealing with a com-
plex geometric shape is a challenging task as well. For example,
when a player encounters a rugged wall, it is costly and often
unnecessary to create a geometrically complex boundary suited
for it. This is one instance where a game developer might use
rectangles to approximate this boundary. In a video game, one
might see this as “glitching” or being able to walk through a
wall in certain areas. Floating-point approximations could also
cause this.

Collisions in games are dealt with in two phases: colli-
sion detection and collision resolution. Collision detection
involves algorithms to check whether any two objects in a
frame have collided. When the number of objects increases, it
becomes computationally intense O (7). For this reason, con-
tinuous collision detection is usually reserved for simulations
that require highly accurate physics.”* Most game engines per-
form a two-phase detection, with the broad phase shortlisting
the potentially colliding bodies and the narrow phase comput-
ing the points of collisions of the bodies in question.”

Collision resolution in video game physics determines how
objects in a virtual world react to a collision. It could involve
repositioning objects and changing their velocities. When two
objects collide, the system must apply constraint-based meth-
ods and rebound forces on them. Sometimes, this introduces
the problem of adding energy to the system, causing many
physical inaccuracies.® One example is when a stationary stack
of blocks collapses on itself because of the continuous rebound
effects applied to these objects.® It is much harder to apply
dynamic equations and render a visually pleasing game with
limited computing resources. Much like the integration tech-
niques explained previously, collision detection techniques get
complex quickly as we approach a realistic outcome.

B Fluid Motion

Fluids are often difficult to simulate in video games because
they constantly change shape and flow, unlike rigid objects.
One way to approach simulating realistic fluids in physics is
by treating them as a system of particles. Each particle is con-
trolled by an algorithm that calculates its velocity, position, and
its interactions with other particles.” However, a high compu-
tational ability is required to maintain the physical accuracy of
these methods. Another approach to this problem is to treat
the fluid as a grid of cells and use each cell to store the proper-
ties previously calculated by the particle algorithm. By applying
fundamental equations (like the Navier-Stokes equation) to
the cells, the system can handle interactions and behaviors of
fluids.” Sprites (2D animations) are commonly used for large-
scale simulations like oceans/water surfaces. Getting a realistic
effect is a challenge when dealing with the rendering of fluids.

Network Physics and Multiplayer Games:
On modern-day networks with fiber optic cables, data
transmission happens incredibly fast, almost at the speed of
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light. However, the electrical signals that carry data undergo
attenuation, experience propagation delay, and may experience
interference when traveling over long distances. These factors
constrain how fast data can be reliably transmitted over a net-
work. Network latency (lag) in games is the time to send a
user’s input to a remote server and receive a response.’” In a
multiplayer game over a network, latency poses a considerable
challenge for conducting smooth gameplay. If a player on the
West Coast of the United States interacts with a server on
the East Coast, there is a theoretical minimum latency of 25-
30ms, but more like 40ms in the best case. It is also important
to note that additional latencies arise from device performance,
network congestion, wireless networks, security protocols, and
network protocols such as routing.!

e Multiplayer Games and Authoritative Server:

Authoritative servers arbitrate gameplay among multiple
players. They are essential for maintaining fairness, consisten-
cy, and security in multiplayer games. They serve as the single
source of truth, ensuring all players experience an identical
game world. By validating player inputs and enforcing game
rules, servers prevent cheating and provide a level playing field.
For instance, a server can prevent a player with a game mod
that could set a car's speed to an unrealistic level, maintaining
the integrity of the game.

*  Simulating Client, Server, and Network Lag:

A simulation is developed in JavaScript and HTML to
demonstrate the effects of network lag between game clients
and the server. The core simulation consists of one or more
client instances (running in their own threads). For the sake
of simplicity, the round-trip network latency is configured
as a property on the client (client_network_lag). The server
component runs in its own thread. A shared buffer is used
to communicate the input state from the client to the server.
Client enqueues inputs to the shared buffer with a msg_pro-
cess_time equal to the current time + client_network_lag. The
server dequeues messages from the shared buffer when the
current time is greater than or equal to the msg_process_time.
The server is designed to process inputs and send updates pe-
riodically at a configurable refresh rate. The pseudo-code in
Figures 6 and 7 summarizes the client and server loops for a
game that involves firing a cannon in the air.

Client Loop
{
Initialize velocity and firing angle of the cannon.
do {
Compute (x,y) position of the cannon
msg_process_time = cur_timestamp+client_network_lag
Enqueue {msg_process_time, position(x,y)} to the shared buffer
Check for server world updates
Render world
sleep(x)
} until end
}

Figure 6: Simulating the client loop. This figure highlights the process
that the client executes before rendering the frame. The client loop computes
position and a process time (for simulated network connection). It enqueues
these two inputs to the shared buffer with the server. If the server sends out a
word state, it will render it.

Server Loop
do
For all clients {
Check for new inputs in the shared buffer
Process inputs if it is time ( if cur_time >= process_time)
Validate inputs
Enqueue world state to all clients
Sleep until next refresh time

}

Juntil end

Figure 7: Simulating the server loop. This figure demonstrates the process
the authoritative server executes. The server loop checks the shared buffer for
new inputs and processes them if the process time has passed. It validates the
inputs and sends the world state to all clients.

The simulated client and server acting in lockstep is a very
naive implementation and is rarely used by game developers.
Here, the client sends inputs to the server and waits for it to
update its state. This involves a round-trip delay to the server
before the client renders its new state. We will analyze the ren-
dering from both the client’s and the server’s point of view. In
reality, the server is not in the business of rendering. We catch a
glimpse of the server state through hypothetical server screen-
shots. These simulations are repeated for both turn-based and
multiplayer racing games.

e Multiplayer Turn - based Game:

Consider the case of a two-player turn-based game like
Scrabble or Darts. An authoritative server maintains the game
state. In this scenario, each player interacts with a remote server
in the following manner:

* The players send inputs to the server

* The server receives inputs, validates them, and sends them

back to all the players

* The players render the game world after receiving the up-

dates from the server.

Let us simulate this by considering the case of players firing
a dart (cannon) in projectile motion, attempting to hit a target
one after another. The figure below is a simulation of the client
and the server receiving state packets over the network.

PLAYERALag= 250 ms-

Server view - Update 3 times per second

Figure 8: Visualizing state update arrivals on client and server. Here, both
Client and Server are in lockstep synchronization, characterized by the server
rendering faster than the client. Lag is set at 250 ms for Player A, and the
server refresh rate is set to 3 updates per second.

The client and the server trace the trajectories of the can-
nonball. Each dot in the figure represents the arrival of a state
update packet containing the (x,y) position of the object. The
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gaps (spacing) between the dots correspond to the latency as
the receiving entity processes the data. The figure shows that
the spacing between the client’s dots is almost identical to the
server's. However, the client’s state is updated upon receiving
the world state from the authoritative server after some net-
work delay.

The simulation depicts a couple of important points:

* A constant lag value simulates the reception and process-
ing in perfect periodic intervals.

* The client is behind the server in terms of updating the
state. In other words, the client follows the server, and the net-
work latency between the client and the server governs the
rendering experience.

Server view - Update 3 times per second

.
[

Last acknowledged input: Player 0: #294

Figure 9: Simulating random latency (10 -500ms). This is the server view
for a client with a random lag value set. Each dot represents a packet arrival.
The nonnon-uniform spacing of the dots is characteristic of a non -uniform
network latency.

In reality, network lag is never constant in magnitude. Let’s
simulate applying a random latency between 10 and 500 ms.
As shown in Figure 9, the time interval between the network
packet arrivals is no longer uniform. If the client renders the
state immediately upon the arrival of state update packets, the
non-uniform spacing of arrivals could result in infrequent and
jittery rendering, leading to a poor player experience.

*  Dejittering Buffer:

A common solution to this problem is a de-jittering buffer
on the receiving end. A de-jittering (delay) buffer absorbs vari-
ation in network packet arrivals. This means that if the packet
arrives at the client at time t0 and the duration of the de-jit-
tering buffer is, say,  ms (de-jittering delay), the packet will be
processed after 7 + d ms. This smooths the game experience as
updates could be delayed and rendered constantly, even if their
arrival has variable delays. The side effect of this technique is
that the de-jittering of the delay offsets the client’s render-
ing of the game. A decent de-jittering buffer would be useful
in scenarios where smooth playback is essential. For example,
while watching a TV show on an on-demand streaming ser-
vice, the playability of the video depends on how frequently
the frames are processed and rendered. If the media packets
are rendered aggressively as they come in, there is a possibility
of running out of them at times (underflows) when there are
network hiccups. However, a very minimal de-jittering buf-
fer is advised in a scenario where getting real-time updates is
crucial, like a first-person shooter game. Such a game is not
playable with significant network delays. A delay buffer of 500

ms is reasonable for turn-based games.

B Multiplayer Racing Game

Let us now consider a simple case of a multiplayer racing
game in which two players are connected to the authoritative
server and synchronized periodically on a server refresh inter-
val (in a lockstep manner). The simulation is now adjusted to
demonstrate the client and server views as the game progresses.

Setup:

Player A (green car) and Player B (red car) are racing to
the right from the start position. Each player's network lag
(round-trip time) to the server is slightly different. Let’s as-
sume Player B has a larger lag of 250ms, and Player A has a lag
of 150ms one way to the server.

150 ms Server tick 33 ms

250 ms

0ms

150 ms ----

250 ms -

283ms |

433 ms

§33fe: T T e eeenses i

Figure 10: Network events in a racing game. The players report their
position to the server, and their inputs are validated after input from both
players is received. The server sends the world state to both clients, who then

apply and render it.

Even though both clients receive the data at different times,
the cars trace the same path, and there will be no discrepancies
in determining the winner. The server view (state) is slightly
ahead of the clients’ views. The clients are not in perfect sync
because of differences in network characteristics. However, the
clients render the game state and progress without losing in-
formation.

PLAYER A - GREEN Lag = 150 ms Prediction () Reconciliation (J Interpolation

§ > |
(Lol — [

Server view - Update 30  times per second

F >- |
. —0- [

PLAYER B - RED Lag = (250 |ms (JPrediction - (JReconciliation - ( Interpolation

y - [
() ew—ry ‘
X

Figure 11: Racing simulation with lockstep. In the visualization of the
diagram before, Player A (green car) has a lag of 150 ms, and Player B (red
car) has a lag of 250 ms. All clients are in lockstep, so both Player A and Player
B are perfectly in sync.

If we pay close attention to Figure 11, we see that the up-
dates happened in the following order.

* Server

* Player A is a client with a shorter (150ms) lag.

* Player B is a client with a larger (250ms) lag.
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Network latency is still a challenge in this scenario, as it takes
significant time to synchronize the server and client. A large
network latency for one client ruins the game for all the clients,
once again worsening the game's playability.

B Working Around Lockstep Delay

The following techniques are commonly employed to
improve the game experience and avoid the latency issues in-
troduced by a player with a bad network.

Client SideSide-Prediction:

Client-side prediction is a technique that aims to reduce the
perceived latency and improve the game experience. With cli-
ent-side prediction on, the client will use the inputs (velocity,
old position, time step) to locally compute their new position
and immediately apply it to themselves. They still send their
inputs to the server, which computes and sends out the world
state. Once the world state is sent out, the client has to accept
the server’s state. This could mean returning to a position the
client has already traversed.

An abrupt correction is sometimes necessary if the cli-
ent-predicted state and the server state deviate significantly.
This is noticeable in gameplay, where an object moves forward
and suddenly returns to a prior position. Visually, this causes
a jarring effect as it could confuse the player regarding their
position.

It is especially troublesome in shooting games where the
client's location is very important. If the perceived location is
not equivalent to the true location processed by the server, the
game experience could suffer. To escape this jarring effect, an-
other technique called reconciliation is employed.

Client Side Prediction (with reconciliation):

Reconciliation attempts to deal with the abrupt adjust-
ments to the client’s state. This is accomplished by tracking
the predicted states in a buffer and reconciling them with serv-
er-reported states. If a server-reported state is already close to
what the client saw, the server update does not affect the client
(no rendering changes). With this technique, the client accepts
the state changes from the server and re-applies its stored in-
puts to maintain the continuity of the predicted state, thus
allowing it to render faster when there is no deviation.

Authoritative ‘

‘\ Client ] ‘ Sorver

Ir

np1,
Inp1 x
. S,

Inp2 | Inp1

ot

G
Re-apply
inputs

Figure 12: Tracking inputs with reconciliation buffer. This figure depicts
the timing of input events to the server. The client stores the predicted
states(Inp1 and Inp2) in the buffer shown on the left. The ST (state update)
message from the server arrives later. The client reconciles the ST message,
recognizes that Inp1 has already been locally rendered, and proceeds to reapply
other predicted inputs.

In our simulation, if reconciliation is turned on for the client,
the client predicts and renders its state without delay and up-
dates the velocities and positions. It then sends this data to the
server, validating the inputs and sending the world state to the
clients. However, if the state (position, velocity, etc.) sent out by
the server is one that the client already has close to the client’s
predicted state, the update is applied seamlessly.

PLAYER A - GREEN Lag = 150 |ms Prediction @ Reconciliation & Interpolation ©)

. b |
[ T

Server view - Update 30 | times per second

00 —0- “

PLAYER B - RED Lag =150 ms & Prediction - [@Reconciliation - O Interpolation

> - \

Figure 13: Prediction and reconciliation for Player A/B. Both cars have
a lag of 150ms, and client-side prediction and reconciliation are enabled for
both Player A and Player B. Each player renders their own car at a faster rate
than the server.

Notice in Figure 13 that Player A (top section) renders his
object faster than the server (middle section). There is no jar-
ring effect since the inputs the server has validated are already
traversed by the client and don’t cause any disruptive impact
on rendering.

However, we see that reconciliation only fixes the problem
for oneself. It does not render another client’s entity at a faster
rate. This could quickly result in problems if there is enough
lag to cause a discrepancy in who the winner is. To mitigate the
effects of this problem, game developers may use the reconcil-
iation buffer as a sort of de-jittering(delay) buffer to minimize
the drift between oneself and the other players. A client may
use different techniques, like interpolation (discussed below),
to smoothly transition from the locally predicted state to the
server-computed state.

Reconciliation is a great technique in first-person shooter
games like Counter-Strike, Call of Duty, etc. Fast-paced games
like these need frequent computations that could overwhelm
the network. Using client-side prediction with reconciliation
improves the responsiveness of these games in the face of net-
work latency. These games also use reconciliation to ensure fair
gameplay and prevent exploits. In games that require complex
and accurate physics simulations, reconciling states becomes
extremely cumbersome. Developers may avoid local client
computations and lean towards waiting for server updates.

Interpolation:

Interpolation is a technique for predicting a user’s inter-
mediate path of motion using given inputs. Let us consider
the first case where interpolation might be used. To smoothly
render another client’s motion, we must effectively “guess” the
path taken. This relates to the different integration techniques
in kinematics previously discussed for single-player games.
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When player A receives discrete packets of information
about player B, interpolation predicts what values could have
come in between to create the illusion of a continuous and pe-
riodic arrival of packets.

Moreover, interpolation could be helpful in scenarios where
the server is temporarily down or the client does not have a
good connection with it. By guessing the player's path based on
inputs, the game will not shut down with a temporary loss of
connection. Essentially, interpolation allows the game to sim-
ulate a live connection for small periods of time, even when an
actual connection is not present.

A straightforward case to interpolate in one dimension is
shown below.

interpolated displacement = x, + (x;-x, )( rendering timestamp - £,)/( #,-4,)

The interpolation code fragment takes two positions (x, x,)
and their corresponding timestamps (t, t,) and interpolates
an intermediate position at the rendering timestamp likely to
be on the path between x; and x,. As discussed in the kine-
matic integration techniques, this simple equation grows far
more complex when we have to deal with more variables, such
as two-dimensional motion, air resistance, variable forces, and
collisions, that can cause the entity to deviate from the predict-
ed path.

Now that we have established the basic methods game
developers use to render multiplayer objects and their com-
plexities, let us discuss two techniques often used to deal with
these common problems.

Deterministic Lockstep:

(Note here that Deterministic Lockstep is slightly differ-
ent from Lockstep Synchronization mentioned previously).
Players calculate and send out all their ‘inputs’in deterministic
lockstep.’ Once every player has these inputs, each player will
apply them to their game, leaving all players with the same
frame at the same time. This method is bandwidth efficient
as only game inputs are passed around the network. The state
computation is performed on every player’s device. However,
this deterministic process has certain drawbacks. If the various
clients' hardware differs, their floating-point state computa-
tions could drift over time."* The inputs are expected to be
received in the same order over the network as they are sent. If
packets are sent on a lossy network, adaptations must be made
to the game to ignore lost packets and move on to the next
available state.

Snapshot Interpolation:

Snapshot interpolation is a method of taking a ‘snapshot’of a
user’s state, containing all relevant information like orientation,
position, etc., and sending it to other players. The snapshots
are queued in an interpolation buffer and are used for render-
ing. Snapshots don't need to arrive in lockstep. For example,
information from two snapshots could be used to interpolate
the player's path in between those snapshots.”> While this
technique is inaccurate, it fits well for large player counts. To
accomplish smooth rendering, the snapshot interpolation buf-
fers up snapshots rather than instantly rendering them.

B More Challenges

Through simulations and scenarios, we have analyzed how
networked multiplayer games are affected by network lag.
However, this problem grows more complicated as we intro-
duce a different type of game, including the concept of a target,
a common theme in first-person shooter games. When we take
our most basic case, a person is shooting at a moving target,
and we don’t have to account for the time of travel of the bullet.
For the server to deal with this type of lag, it must essentially
‘traceback’ the position of the target to when it was first shot.

When we move from a rifle to a cannon, the trajectory now
has a significant time and shape.” Let us take the case where
the client is firing a cannon to hit a target. Once the client fires
the projectile, this data must be sent to the server. However, the
trajectory has partially been completed by the time it reaches
the server. Therefore, many servers use two techniques - look-
ing into the past and staying synchronized in the present.” By
keeping track of the time it takes for the client to send data to
the server, they can trace back the path it has already traveled,
checking to see if the projectile has collided with the target.
If this check fails, the server can synchronize with the client
and complete the rest of the trajectory.” These calculations in-
clude mathematical approximations and often do not account
for factors such as air resistance and air density. They often use
straight trace lines to approximate the path of the trajectory to
see if the collision occurred, while in reality, the path traversed
could be a parabola.

B Conclusion

This paper has explored how approximations are used to
simulate the physics of animated objects in video games ef-
fectively and realistically. Through this analysis of simulations,
we can see that the physics of our current games is far from
perfect. Features like Virtual and Augmented reality require
more computations, necessitating better approximations and
efficient calculations. While we might have the tools to make a
very computationally costly, highly accurate physics simulation,
this is often unnecessary for many video games. Instead, the
challenge comes in determining which aspects of physics are
vital and what compromises and tradeoffs must be made to
best suit the type of game. Numerical methods like the ones
discussed above could introduce errors that get magnified over
time. Game developers use various simplified physics models
and constraint-based dynamics to restrict the domain of the
object’s positions and ensure certain stability. Developers take
creative liberties, often sacrificing physical laws in the pro-
cess. Within multiplayer games, developers may use different
synchronization techniques in the face of network lag. As dis-
cussed, there are benefits and drawbacks of different techniques
like client-side prediction, reconciliation, and interpolation.
With each technique comes a different tradeoff that one must
strategically optimize so that the game runs as smoothly and
efficiently as possible. Game development that involves physics
is about balancing realism with reality.
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