
© 2026 Terra Science and Education	 56	

Simulating Physics in Single and Networked Multiplayer 
Games      

Bhavya Babbellapati        
Mission San Jose High School, 41717 Palm Ave, Fremont, CA, 94539 USA; bhavya.babb@gmail.com 

ABSTRACT: Simulating realistic physics in video games often involves mathematical approximations to optimize 
performance. Limited computational power forces game developers to simplify physics simulations, as real-time updates require 
many calculations each frame. In the case of networked multiplayer games, the physical limitations of data transmission introduce 
additional performance-degrading factors like network lag. This paper analyzes common numerical methods for single-player 
game physics, including Euler’s methods and Verlet integration, highlighted for their widespread use and illustrative trade-offs in 
accuracy and computational efficiency. A subsequent section discusses techniques employed in network-based multiplayer games 
and how game developers overcome data transmission limitations. These techniques are demonstrated through simulations to 
explain different lag compensation mechanisms. Finally, we discuss the results and the game contexts where these techniques are 
applicable.  

KEYWORDS: Embedded Systems, Networking and Data Communications, Multiplayer, Numerical Game Simulation. 

�   Introduction
Realistic physics in video games makes interactions feel 

natural and believable, reducing inconsistencies that could 
disrupt gameplay. The effectiveness of video game animation 
hinges on smooth renditions of visuals. This rendition rate 
for a human visual system is between 30 and 60 frames per 
second.1 All game animations must be computed, composed, 
and rendered in a frame interval. Even with advances in dis-
play systems, game developers tend to target a wide range of 
computing platforms with different capabilities. This strin-
gent time frame necessitates the utilization of computational 
optimizations and approximations in single-player games. To 
balance performance, game developers and physics engine 
developers often prioritize certain aspects, sometimes at the 
expense of realistic physics. Network-based multiplayer games 
create additional challenges because of the physical limitations 
of the data transmission and additional queueing delays im-
posed by the data networks.2 Other sources of delay can arise 
from wireless connections and delay from peripheral interfaces 
like keyboards and mice. In addition to rendering challenges, 
the integrity and correctness of the game come into play. This 
paper surveys various techniques for resolving the identified is-
sues and demonstrates different scenarios through simulations. 
It discusses where some of these techniques are employed and 
how game developers tend to work around the limitations of 
network physics.

�   Kinematics and Numerical Techniques 
In physics, we encounter problems in kinematics that com-

pute a final position at the end of an interval. In video games 
and simulations, game inputs are sampled periodically, and 
simulations run in repeated intervals, giving the impression 
of continuous motion updates. Closed-form/Analytical solu-

tions exist for the most basic situations. Advanced physical 
phenomena need solutions to complex integrals for which it is 
extremely hard to arrive at a closed-form solution. Numerical 
Integration is a fundamental technique used in game physics 
to simulate the motion of objects over time.3 It allows game de-
velopers to approximate solutions to differential equations that 
describe the physical laws governing the game objects. These 
techniques help us simulate the continuous behavior of the 
objects using discrete steps. Games utilize these techniques in 
small time steps to compute velocity, acceleration, and position. 
They effectively predict what happens at the end of every time 
step, generating an impression of continuous motion. A typical 
time step for 30 frames/second is 33ms (1/30th of a second). 
In practice, the time step used for computation aligns with the 
refresh interval of the game rendering.3

Given the use of time steps, consider the fundamental 1D 
kinematics equations:

vn+1 = vn + an Δt
sn+1 = sn + vn Δt

Here, vn+1 is the velocity of the object in the (n + 1)th frame, 
vn is the velocity in the previous frame (nth frame), an is the 
acceleration of the object in the nth frame, and Δt is the time 
step between the frames. Similarly, sn+1 and sn denote the dis-
placements in the corresponding frames. We know from our 
first course in calculus that acceleration = dv/dt (rate of change 
of velocity in an interval) and velocity = ds/dt (rate of change 
of displacement in the interval). Analytically computing these 
would involve finding derivatives of these functions. Numeri-
cal integration takes an iterative approach by computing these 
variables repeatedly in very small intervals.

DOI: 10.36838/v8i1.56

REVIEW ARTICLE

	 ijhighschoolresearch.org



	 57		 57	

Euler ’s Methods:
The above set of numerical calculations is called Explicit 

Euler’s integration.4 It gives a simple set of equations that 
allows us to compute velocity and position for each displayed 
frame. This method is computationally inexpensive, as output 
variables are calculated in a straightforward manner. It gives 
accurate results as long as there are no significant variations in 
the variables in a short span of time. A C programming code 
snippet for Explicit Euler’s integration is shown below.

The computation in Figure 1 is discrete in nature, and the 
rendered movements may look jerky depending on how fre-
quently the velocity and displacement variables are updated 
and the visuals are rendered. Below is a sample output for two 
different values of timestep (dt).

We have more intermediate velocity and displacement val-
ues if we decrease our integration interval (dt) for a given 
journey. We can observe (from the figures above) that as dt 
decreases (from 0.5s to 0.3s) for a given timestamp, the com-
puted velocity remains the same while the displacement drifts. 
Our computation for displacement is an approximation that 
assumes velocity is constant over dt. In reality, velocity changes 
over the interval dt as acceleration is not zero.

The closed-form value from kinematics is:
  𝑆 = 𝑣0t + 1/2𝑎𝑡2 = 0.5 ∗ 10 ∗ 3 ∗ 3 = 45𝑚 for (𝑣0 = 0,𝛥𝑡 =  3𝑠,𝑎 = 10𝑚/𝑠2)

As seen in Figure 4, if we decrease dt to a much smaller 
value, our computation approaches the expected value (45m). 
Running the computations for a very long time accumulates 
significant errors, especially at higher values of dt. A very low 
value of dt is desirable, but it makes the computations prohib-
itively expensive and is rarely used in current physics engines. 
When acceleration is no longer a constant, Euler’s Explicit 
method fails again, as it does not account for another varying 
value over time.

Euler’s implicit integration method takes a different ap-
proach to dealing with this issue. It uses the first derivative 
and evaluates it at the next time step. The following equations 
include the necessary changes.

vn+1 = vn + an+1 Δt
sn+1 = sn + vn+1 Δt

These equations rely on knowing the future value of the ac-
celeration (i.e., an+1). Approximating a future value could be 
done with mathematical techniques. However, these equations 
are costly and prohibitive for a game engine that is respon-
sible for many updates over the frame interval.4 As a result, 
even though the Implicit Euler Integration method gives more 
accurate results, it is not widely used in game simulation. A 
hybrid and practical approach to the problem comes from Eu-
ler’s semi-implicit integration.

vn+1 = vn + an Δt
sn+1 = sn + vn+1 Δt

It computes the acceleration at the current timestep and ve-
locity in the subsequent time step. This method provides a 
computationally easy integration with fewer errors than the 
explicit method. Euler’s semi-implicit method that uses the 
nth frame’s acceleration to calculate the (n + 1)th frame's ve-
locity, which is then used to compute the object's new position. 
This eliminates the computationally expensive part (calculat-
ing an+1) of Euler’s implicit. It also minimizes Euler’s explicit 
integration inaccuracies by using vn+1 instead of vn to compute 
position.

Even Euler’s semi-implicit method can lead to error because 
we use a rounded value in each timestep.

More specifically, we use our value of an to calculate vn+1 
and use this value once again to calculate sn+1. Therefore, after 
many iterations, the error produced could still deviate from the 
true value, posing a problem for those who want to code ex-
tremely accurate simulations.4 One second-order method that

DOI: 10.36838/v8i1.56

Figure 1: Euler’s explicit method. Here is a simple snippet of code 
demonstrating how Euler’s Explicit Integration works on computers. It uses 
a timestep of 5 seconds to compute velocity and displacement at each frame.

Figure 4: Euler ’s Explicit Displacements (for t = 3s). The summary of the 
highlighted data in Figures 2 and 3 are presented in this table. It displays 
velocity and displacement at t=3s for 4 different timesteps.

Figure 2: Sample output for timestep (dt)= 0.5 seconds. These are the 
results when running the loop in Figure 1 for a timestep of 0.5 seconds. At 3 
seconds, the velocity is 30 m/s and the displacement is 52.5 m.

Figure 3: Sample output for timestep (dt)= 0.3 seconds. These are the 
results when running the loop in Figure 1 for a timestep of 0.3 seconds. At 3 
seconds, the velocity is 30 m/s and the displacement is 49.5 m.

	 ijhighschoolresearch.org



	 58	 DOI: 10.36838/v8i1.56

computes velocity differently is called Verlet Integration. In-
stead of Euler’s integration techniques that find velocity and 
position, Verlet’s method finds position straight from the ac-
celeration.5 Computing acceleration needs a second derivative. 
Starting from Euler’s equations, we can arrive at

𝑠𝑛+1 = 𝑠𝑛 + 𝑣𝑛𝛥𝑡 + 1/2𝑎𝑛𝑡2

The velocity could be computed from:
𝑣𝑛 = (𝑠𝑛−𝑠𝑛−1) / 𝛥𝑡

The equations could be easily combined to obtain:
𝑠𝑛+1 = 2𝑠𝑛−𝑠𝑛−1 + 1/2𝑎𝑛𝑡2

Although this algorithm is straightforward and has low er-
ror, we must use further approximations to find velocity. One 
advantage of Verlet integration is reversibility.5 We could com-
pute positions and velocities in reverse, which could be useful 
for game replays.

Euler’s semi-implicit method performs fine if acceleration 
is constant in a given timestep. However, higher-order meth-
ods may yield even more accurate calculations that are rarely 
necessary in video game simulations. Games like Grand Theft 
Auto, Red Dead Redemption, and The Witcher series use 
physics engines that often employ Euler's method for simulat-
ing various physical phenomena.

�   Collisions and Approximations
Collisions are key elements in many video games. Some 

examples of collisions are when a game object or character col-
lides with a surface or terrain, a bullet collides with an object, 
or a character bumps into a wall. A collision is declared when 
two bodies intersect or the distance between them falls below 
a certain threshold.

Game characters and objects are modeled using simple 
geometric shapes called bounding volumes. These shapes 
approximate the object's actual geometry, making collision de-
tection more efficient. Some common models are:

1. Axis Aligned Bounding Box (AABB) - rectangular box 
aligned with the world axis.6

2. Sphere - sphere in which the object is assumed to be en-
closed. Efficient for collision checks, but overestimates the 
shape of the object.

3. Oriented Bounding Box (OBB) - rectangular box aligned 
with the object's orientation. It is a more complex, but also 
accurate method.6

Simple geometries and numerical methods introduce errors 
in detecting collisions. It is common to experience incorrect 
collisions in games. Sometimes, collisions (hits) are registered 
when we feel there is no actual contact; other times, collisions 
are registered at a slightly off location. Dealing with a com-
plex geometric shape is a challenging task as well. For example, 
when a player encounters a rugged wall, it is costly and often 
unnecessary to create a geometrically complex boundary suited 
for it. This is one instance where a game developer might use 
rectangles to approximate this boundary. In a video game, one 
might see this as “glitching” or being able to walk through a 
wall in certain areas. Floating-point approximations could also 
cause this.

Collisions in games are dealt with in two phases: colli-
sion detection and collision resolution. Collision detection 
involves algorithms to check whether any two objects in a 
frame have collided. When the number of objects increases, it 
becomes computationally intense O (n²). For this reason, con-
tinuous collision detection is usually reserved for simulations 
that require highly accurate physics.7,8 Most game engines per-
form a two-phase detection, with the broad phase shortlisting 
the potentially colliding bodies and the narrow phase comput-
ing the points of collisions of the bodies in question.7

Collision resolution in video game physics determines how 
objects in a virtual world react to a collision. It could involve 
repositioning objects and changing their velocities. When two 
objects collide, the system must apply constraint-based meth-
ods and rebound forces on them. Sometimes, this introduces 
the problem of adding energy to the system, causing many 
physical inaccuracies.8 One example is when a stationary stack 
of blocks collapses on itself because of the continuous rebound 
effects applied to these objects.8 It is much harder to apply 
dynamic equations and render a visually pleasing game with 
limited computing resources. Much like the integration tech-
niques explained previously, collision detection techniques get 
complex quickly as we approach a realistic outcome.

�   Fluid Motion
Fluids are often difficult to simulate in video games because 

they constantly change shape and flow, unlike rigid objects. 
One way to approach simulating realistic fluids in physics is 
by treating them as a system of particles. Each particle is con-
trolled by an algorithm that calculates its velocity, position, and 
its interactions with other particles.9 However, a high compu-
tational ability is required to maintain the physical accuracy of 
these methods. Another approach to this problem is to treat 
the fluid as a grid of cells and use each cell to store the proper-
ties previously calculated by the particle algorithm. By applying 
fundamental equations (like the Navier-Stokes equation) to 
the cells, the system can handle interactions and behaviors of 
fluids.9 Sprites (2D animations) are commonly used for large-
scale simulations like oceans/water surfaces. Getting a realistic 
effect is a challenge when dealing with the rendering of fluids.

Network Physics and Multiplayer Games:
On modern-day networks with fiber optic cables, data 

transmission happens incredibly fast, almost at the speed of 

Figure 5: Bounding boxes. This diagram simplifies how AABB and 
OBB bounding boxes work, using a rectangle as the object. With AABB, 
the bounding box is aligned with the x and y axes, overestimating the area 
bounded. The OBB aligns the box to the rectangle’s tilted orientation and 
therefore perfectly matches its shape.

ijhighschoolresearch.org



	 59	

The simulated client and server acting in lockstep is a very 
naive implementation and is rarely used by game developers. 
Here, the client sends inputs to the server and waits for it to 
update its state. This involves a round-trip delay to the server 
before the client renders its new state. We will analyze the ren-
dering from both the client’s and the server’s point of view. In 
reality, the server is not in the business of rendering. We catch a 
glimpse of the server state through hypothetical server screen-
shots. These simulations are repeated for both turn-based and 
multiplayer racing games.

•	 Multiplayer Turn - based Game:
Consider the case of a two-player turn-based game like 

Scrabble or Darts. An authoritative server maintains the game 
state. In this scenario, each player interacts with a remote server 
in the following manner:

• The players send inputs to the server
• The server receives inputs, validates them, and sends them 
back to all the players
• The players render the game world after receiving the up-
dates from the server.
Let us simulate this by considering the case of players firing 

a dart (cannon) in projectile motion, attempting to hit a target 
one after another. The figure below is a simulation of the client 
and the server receiving state packets over the network.

The client and the server trace the trajectories of the can-
nonball. Each dot in the figure represents the arrival of a state 
update packet containing the (x,y) position of the object. The 

light. However, the electrical signals that carry data undergo 
attenuation, experience propagation delay, and may experience 
interference when traveling over long distances. These factors 
constrain how fast data can be reliably transmitted over a net-
work. Network latency (lag) in games is the time to send a 
user’s input to a remote server and receive a response.10 In a 
multiplayer game over a network, latency poses a considerable 
challenge for conducting smooth gameplay. If a player on the 
West Coast of the United States interacts with a server on 
the East Coast, there is a theoretical minimum latency of 25-
30ms, but more like 40ms in the best case. It is also important 
to note that additional latencies arise from device performance, 
network congestion, wireless networks, security protocols, and 
network protocols such as routing.1

•	 Multiplayer Games and Authoritative Server:
Authoritative servers arbitrate gameplay among multiple 

players. They are essential for maintaining fairness, consisten-
cy, and security in multiplayer games. They serve as the single 
source of truth, ensuring all players experience an identical 
game world. By validating player inputs and enforcing game 
rules, servers prevent cheating and provide a level playing field. 
For instance, a server can prevent a player with a game mod 
that could set a car's speed to an unrealistic level, maintaining 
the integrity of the game.

•	 Simulating Client, Server, and Network Lag:
A simulation is developed in JavaScript and HTML to 

demonstrate the effects of network lag between game clients 
and the server. The core simulation consists of one or more 
client instances (running in their own threads). For the sake 
of simplicity, the round-trip network latency is configured 
as a property on the client (client_network_lag). The server 
component runs in its own thread. A shared buffer is used 
to communicate the input state from the client to the server. 
Client enqueues inputs to the shared buffer with a msg_pro-
cess_time equal to the current time + client_network_lag. The 
server dequeues messages from the shared buffer when the 
current time is greater than or equal to the msg_process_time. 
The server is designed to process inputs and send updates pe-
riodically at a configurable refresh rate. The pseudo-code in 
Figures 6 and 7 summarizes the client and server loops for a 
game that involves firing a cannon in the air.

DOI: 10.36838/v8i1.56

Figure 6: Simulating the client loop. This figure highlights the process 
that the client executes before rendering the frame. The client loop computes 
position and a process time (for simulated network connection). It enqueues 
these two inputs to the shared buffer with the server. If the server sends out a 
word state, it will render it.

Figure 8: Visualizing state update arrivals on client and server. Here, both 
Client and Server are in lockstep synchronization, characterized by the server 
rendering faster than the client. Lag is set at 250 ms for Player A, and the 
server refresh rate is set to 3 updates per second.

Figure 7: Simulating the server loop. This figure demonstrates the process 
the authoritative server executes. The server loop checks the shared buffer for 
new inputs and processes them if the process time has passed. It validates the 
inputs and sends the world state to all clients.

	 ijhighschoolresearch.org



	 60	

�   Multiplayer Racing Game 
Let us now consider a simple case of a multiplayer racing 

game in which two players are connected to the authoritative 
server and synchronized periodically on a server refresh inter-
val (in a lockstep manner). The simulation is now adjusted to 
demonstrate the client and server views as the game progresses.

Setup:
Player A (green car) and Player B (red car) are racing to 

the right from the start position. Each player's network lag 
(round-trip time) to the server is slightly different. Let’s as-
sume Player B has a larger lag of 250ms, and Player A has a lag 
of 150ms one way to the server.

Even though both clients receive the data at different times, 
the cars trace the same path, and there will be no discrepancies 
in determining the winner. The server view (state) is slightly 
ahead of the clients’ views. The clients are not in perfect sync 
because of differences in network characteristics. However, the 
clients render the game state and progress without losing in-
formation.

If we pay close attention to Figure 11, we see that the up-
dates happened in the following order.

• Server
• Player A is a client with a shorter (150ms) lag.
• Player B is a client with a larger (250ms) lag.

gaps (spacing) between the dots correspond to the latency as 
the receiving entity processes the data. The figure shows that 
the spacing between the client’s dots is almost identical to the 
server's. However, the client’s state is updated upon receiving 
the world state from the authoritative server after some net-
work delay.

The simulation depicts a couple of important points:
• A constant lag value simulates the reception and process-

ing in perfect periodic intervals.
• The client is behind the server in terms of updating the 

state. In other words, the client follows the server, and the net-
work latency between the client and the server governs the 
rendering experience.

In reality, network lag is never constant in magnitude. Let’s 
simulate applying a random latency between 10 and 500 ms. 
As shown in Figure 9, the time interval between the network 
packet arrivals is no longer uniform. If the client renders the 
state immediately upon the arrival of state update packets, the 
non-uniform spacing of arrivals could result in infrequent and 
jittery rendering, leading to a poor player experience.

•	 Dejittering Buffer:
A common solution to this problem is a de-jittering buffer 

on the receiving end. A de-jittering (delay) buffer absorbs vari-
ation in network packet arrivals. This means that if the packet 
arrives at the client at time t0 and the duration of the de-jit-
tering buffer is, say, d ms (de-jittering delay), the packet will be 
processed after t0 + d ms. This smooths the game experience as 
updates could be delayed and rendered constantly, even if their 
arrival has variable delays. The side effect of this technique is 
that the de-jittering of the delay offsets the client’s render-
ing of the game. A decent de-jittering buffer would be useful 
in scenarios where smooth playback is essential. For example, 
while watching a TV show on an on-demand streaming ser-
vice, the playability of the video depends on how frequently 
the frames are processed and rendered. If the media packets 
are rendered aggressively as they come in, there is a possibility 
of running out of them at times (underflows) when there are 
network hiccups. However, a very minimal de-jittering buf-
fer is advised in a scenario where getting real-time updates is 
crucial, like a first-person shooter game. Such a game is not 
playable with significant network delays. A delay buffer of 500 
ms is reasonable for turn-based games.

DOI: 10.36838/v8i1.56

Figure 9: Simulating random latency (10 -500ms). This is the server view 
for a client with a random lag value set. Each dot represents a packet arrival. 
The nonnon-uniform spacing of the dots is characteristic of a non -uniform 
network latency.

Figure 10: Network events in a racing game. The players report their 
position to the server, and their inputs are validated after input from both 
players is received. The server sends the world state to both clients, who then 
apply and render it.

Figure 11: Racing simulation with lockstep. In the visualization of the 
diagram before, Player A (green car) has a lag of 150 ms, and Player B (red 
car) has a lag of 250 ms. All clients are in lockstep, so both Player A and Player 
B are perfectly in sync.

ijhighschoolresearch.org



	 61	

Network latency is still a challenge in this scenario, as it takes 
significant time to synchronize the server and client. A large 
network latency for one client ruins the game for all the clients, 
once again worsening the game's playability.

�   Working Around Lockstep Delay 
The following techniques are commonly employed to 

improve the game experience and avoid the latency issues in-
troduced by a player with a bad network.

Client SideSide-Prediction:
Client-side prediction is a technique that aims to reduce the 

perceived latency and improve the game experience. With cli-
ent-side prediction on, the client will use the inputs (velocity, 
old position, time step) to locally compute their new position 
and immediately apply it to themselves. They still send their 
inputs to the server, which computes and sends out the world 
state. Once the world state is sent out, the client has to accept 
the server’s state. This could mean returning to a position the 
client has already traversed.

An abrupt correction is sometimes necessary if the cli-
ent-predicted state and the server state deviate significantly. 
This is noticeable in gameplay, where an object moves forward 
and suddenly returns to a prior position. Visually, this causes 
a jarring effect as it could confuse the player regarding their 
position.

It is especially troublesome in shooting games where the 
client's location is very important. If the perceived location is 
not equivalent to the true location processed by the server, the 
game experience could suffer. To escape this jarring effect, an-
other technique called reconciliation is employed.

Client Side Prediction (with reconciliation):
Reconciliation attempts to deal with the abrupt adjust-

ments to the client’s state. This is accomplished by tracking 
the predicted states in a buffer and reconciling them with serv-
er-reported states. If a server-reported state is already close to 
what the client saw, the server update does not affect the client 
(no rendering changes). With this technique, the client accepts 
the state changes from the server and re-applies its stored in-
puts to maintain the continuity of the predicted state, thus 
allowing it to render faster when there is no deviation.

In our simulation, if reconciliation is turned on for the client, 
the client predicts and renders its state without delay and up-
dates the velocities and positions. It then sends this data to the 
server, validating the inputs and sending the world state to the 
clients. However, if the state (position, velocity, etc.) sent out by 
the server is one that the client already has close to the client’s 
predicted state, the update is applied seamlessly.

Notice in Figure 13 that Player A (top section) renders his 
object faster than the server (middle section). There is no jar-
ring effect since the inputs the server has validated are already 
traversed by the client and don’t cause any disruptive impact 
on rendering.

However, we see that reconciliation only fixes the problem 
for oneself. It does not render another client’s entity at a faster 
rate. This could quickly result in problems if there is enough 
lag to cause a discrepancy in who the winner is. To mitigate the 
effects of this problem, game developers may use the reconcil-
iation buffer as a sort of de-jittering(delay) buffer to minimize 
the drift between oneself and the other players. A client may 
use different techniques, like interpolation (discussed below), 
to smoothly transition from the locally predicted state to the 
server-computed state.

Reconciliation is a great technique in first-person shooter 
games like Counter-Strike, Call of Duty, etc. Fast-paced games 
like these need frequent computations that could overwhelm 
the network. Using client-side prediction with reconciliation 
improves the responsiveness of these games in the face of net-
work latency. These games also use reconciliation to ensure fair 
gameplay and prevent exploits. In games that require complex 
and accurate physics simulations, reconciling states becomes 
extremely cumbersome. Developers may avoid local client 
computations and lean towards waiting for server updates.

Interpolation:
Interpolation is a technique for predicting a user’s inter-

mediate path of motion using given inputs. Let us consider 
the first case where interpolation might be used. To smoothly 
render another client’s motion, we must effectively “guess” the 
path taken. This relates to the different integration techniques 
in kinematics previously discussed for single-player games.

DOI: 10.36838/v8i1.56

Figure 12: Tracking inputs with reconciliation buffer. This figure depicts 
the timing of input events to the server. The client stores the predicted 
states(Inp1 and Inp2) in the buffer shown on the left. The ST (state update) 
message from the server arrives later. The client reconciles the ST message, 
recognizes that Inp1 has already been locally rendered, and proceeds to reapply 
other predicted inputs.

Figure 13: Prediction and reconciliation for Player A/B. Both cars have 
a lag of 150ms, and client-side prediction and reconciliation are enabled for 
both Player A and Player B. Each player renders their own car at a faster rate 
than the server.

	 ijhighschoolresearch.org



	 62	

When player A receives discrete packets of information 
about player B, interpolation predicts what values could have 
come in between to create the illusion of a continuous and pe-
riodic arrival of packets.

Moreover, interpolation could be helpful in scenarios where 
the server is temporarily down or the client does not have a 
good connection with it. By guessing the player's path based on 
inputs, the game will not shut down with a temporary loss of 
connection. Essentially, interpolation allows the game to sim-
ulate a live connection for small periods of time, even when an 
actual connection is not present.

A straightforward case to interpolate in one dimension is 
shown below.
interpolated displacement = x0 + ( x1-x0 )( rendering timestamp - t0 )/( t1-t0 )

The interpolation code fragment takes two positions (x0, x1) 
and their corresponding timestamps (t0, t1) and interpolates 
an intermediate position at the rendering timestamp likely to 
be on the path between x0 and x1. As discussed in the kine-
matic integration techniques, this simple equation grows far 
more complex when we have to deal with more variables, such 
as two-dimensional motion, air resistance, variable forces, and 
collisions, that can cause the entity to deviate from the predict-
ed path.

Now that we have established the basic methods game 
developers use to render multiplayer objects and their com-
plexities, let us discuss two techniques often used to deal with 
these common problems.

Deterministic Lockstep:
(Note here that Deterministic Lockstep is slightly differ-

ent from Lockstep Synchronization mentioned previously). 
Players calculate and send out all their ‘inputs’ in deterministic 
lockstep.11 Once every player has these inputs, each player will 
apply them to their game, leaving all players with the same 
frame at the same time. This method is bandwidth efficient 
as only game inputs are passed around the network. The state 
computation is performed on every player’s device. However, 
this deterministic process has certain drawbacks. If the various 
clients' hardware differs, their floating-point state computa-
tions could drift over time.11 The inputs are expected to be 
received in the same order over the network as they are sent. If 
packets are sent on a lossy network, adaptations must be made 
to the game to ignore lost packets and move on to the next 
available state.

Snapshot Interpolation:
Snapshot interpolation is a method of taking a ‘snapshot’ of a 

user’s state, containing all relevant information like orientation, 
position, etc., and sending it to other players. The snapshots 
are queued in an interpolation buffer and are used for render-
ing. Snapshots don't need to arrive in lockstep. For example, 
information from two snapshots could be used to interpolate 
the player's path in between those snapshots.12 While this 
technique is inaccurate, it fits well for large player counts. To 
accomplish smooth rendering, the snapshot interpolation buf-
fers up snapshots rather than instantly rendering them.

�   More Challenges 
Through simulations and scenarios, we have analyzed how 

networked multiplayer games are affected by network lag. 
However, this problem grows more complicated as we intro-
duce a different type of game, including the concept of a target, 
a common theme in first-person shooter games. When we take 
our most basic case, a person is shooting at a moving target, 
and we don’t have to account for the time of travel of the bullet. 
For the server to deal with this type of lag, it must essentially 
‘traceback’ the position of the target to when it was first shot.

When we move from a rifle to a cannon, the trajectory now 
has a significant time and shape.5 Let us take the case where 
the client is firing a cannon to hit a target. Once the client fires 
the projectile, this data must be sent to the server. However, the 
trajectory has partially been completed by the time it reaches 
the server. Therefore, many servers use two techniques - look-
ing into the past and staying synchronized in the present.13 By 
keeping track of the time it takes for the client to send data to 
the server, they can trace back the path it has already traveled, 
checking to see if the projectile has collided with the target. 
If this check fails, the server can synchronize with the client 
and complete the rest of the trajectory.13 These calculations in-
clude mathematical approximations and often do not account 
for factors such as air resistance and air density. They often use 
straight trace lines to approximate the path of the trajectory to 
see if the collision occurred, while in reality, the path traversed 
could be a parabola.

�   Conclusion 
This paper has explored how approximations are used to 

simulate the physics of animated objects in video games ef-
fectively and realistically. Through this analysis of simulations, 
we can see that the physics of our current games is far from 
perfect. Features like Virtual and Augmented reality require 
more computations, necessitating better approximations and 
efficient calculations. While we might have the tools to make a 
very computationally costly, highly accurate physics simulation, 
this is often unnecessary for many video games. Instead, the 
challenge comes in determining which aspects of physics are 
vital and what compromises and tradeoffs must be made to 
best suit the type of game. Numerical methods like the ones 
discussed above could introduce errors that get magnified over 
time. Game developers use various simplified physics models 
and constraint-based dynamics to restrict the domain of the 
object’s positions and ensure certain stability. Developers take 
creative liberties, often sacrificing physical laws in the pro-
cess. Within multiplayer games, developers may use different 
synchronization techniques in the face of network lag. As dis-
cussed, there are benefits and drawbacks of different techniques 
like client-side prediction, reconciliation, and interpolation. 
With each technique comes a different tradeoff that one must 
strategically optimize so that the game runs as smoothly and 
efficiently as possible. Game development that involves physics 
is about balancing realism with reality.

DOI: 10.36838/v8i1.56

ijhighschoolresearch.org



	 63	

�   Acknowledgments 
Thank you to Ms. Hannah Bollar for guiding me through 

this research process. 
Thank you to Gabriel Gambetta for the inspiration for a 

simulated network setup.

�   References
1. Larson, Jennifer. "How Many Frames Per Second Can the Human 

Eye See?" Healthline, 30 Oct. 2024, www.healthline.com/health/
human-eye-fps. Accessed 15 Mar. 2025.

2. ”What Is Network Latency?" IR.com, www.ir.com/guides/
what-is-network-latency. Accessed 15 Mar. 2025.

3. ”Physics Tutorial 2: Numerical Integration Methods Sum-
mary." Physics Classroom, www.physicsclassroom.com/class/
kinematics/Lesson-2/Physics-Tutorial-2-Numerical-Integration- 
Methods-Summary. Accessed 15 Mar. 2025.

4. Fiedler, Glen. "Integration Basics." Gaffer on Games, 1 June 2004, 
gafferongames.com/post/ integration_basics/. Accessed 15 Mar. 
2025.

5. ”Numerical Integration in Games Development." Under-
standing Games Development, 22 Jan. 2015, jdickinsongames.
wordpress.com/2015/01/22/numerical-integration-in-games-de-
velopment-2/. Accessed 15 Mar. 2025.

6. Kokhan, Olga. "Guide to Bounding Boxes in Computer Vision." 
TinkGroup, 16 July 2024, tinkogroup.com/what-is-a-bounding-
box/. Accessed 15 Mar. 2025.

7. Souto, Nilson. "Video Game Physics Tutorial - Part II: Collision 
Detection for Solid Objects." Toptal Engineering Blog, www.
toptal.com/game/video-game-physics-part-ii-collision-detection-
for-solid-objects. Accessed 15 Mar. 2025.

8. Peitso, Loren, and Don Brutzman. "Defeating Lag in Network-Dis-
tributed Physics Simulations." ACM Transactions on Modeling 
and Computer Simulation, vol. 29, no. 3, 2019, pp. 1–22, doi.org/ 
10.1145/3208806.3208826. Accessed 15 Mar. 2025.

9. Stam, Jos. "Stable Fluids." Computer Graphics 30, no. 2, 1996, pp. 
121–128, graphics.cs.cmu.edu/nsp/course/15-464/Spring11/pa-
pers/StamFluidforGames.pdf. Accessed 15 Mar. 2025.

10. Gambetta, Gabriel. "Client-Server Game Architecture." Gabriel 
Gambetta, gabrielgambetta.com/client- server-game-architecture.
html. Accessed 15 Mar. 2025.

11. Fiedler, Glenn. "Deterministic Lockstep." Gaffer on Games, 2014, 
gafferongames.com/post/ deterministic_lockstep/. Accessed 15 
Mar. 2025.

12. Fiedler, Glenn. "Snapshot Interpolation." Gaffer on Games, 30 
Nov. 2014, gafferongames.com/post/ snapshot_interpolation/. Ac-
cessed 15 Mar. 2025.

13. Teymory, Neema. "Why Making Multiplayer Games Is 
Hard: Lag Compensating Weapons in Mech." Game Devel-
oper, 6 Sept. 2016, www.gamedeveloper.com/programming/
why-making-multiplayer-games-is-hard-lag-compensating-weap-
ons-in-mechwarrior-online/. Accessed 15 Mar. 2025.

�   Author
Bhavya Babbellapati is a junior at Mission San Jose High 

School in Fremont, California. She enjoys playing the cello and 
animating in her free time. She hopes to pursue further studies 
in physics, engineering, and coding, and is looking forward to 
working on more projects and simulations in these fields.

DOI: 10.36838/v8i1.56

	 ijhighschoolresearch.org


