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ABSTRACT: The goal of this study is to model the driving factors behind urban tree canopy cover disparities in West Hartford
(WH), East Hartford (EH), and Hartford (HT'), Connecticut. The first objective involved a statistical analysis using socioeconomic
variables and the current percent tree canopy cover (PTCC) from 197 census blocks in WH, EH, and HT. The second objective
entailed performing a geospatial analysis using 70-year time series aerial imagery (1952-2021) for two case-study census blocks in
EH and WH. The results from the census block-level analysis of WH, EH, and HT revealed a negative correlation between the
PTCC and ethnicity (R = -0.461), PTCC and income level (R = -0.435), PTCC and land surface temperature (R = -0.859), and
PTCC and health burden (R = -0.371). Additionally, the aerial image analysis results between the two case-study sites revealed a
significant difference in PTCC (p < 0.05) for all years considered. These findings support our hypothesis that past discriminatory
practices, such as redlining, may have a legacy effect on present-day tree canopy cover.
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B Introduction

Urban populations are rising, posing new challenges in a
changing climate. Already, over 55% of the global population
resides in cities.! In the United States, cities harbor nearly 81%
of the population.” Increased urbanization can lead to diverse
employment opportunities, but has also contributed to sig-
nificant environmental degradation. Urbanization has led to
heightened air and water pollution, habitat loss, land degrada-
tion, and greenhouse gas emissions.’ Studies have shown that
these conditions significantly affect the health and well-being
of urban communities.* A key solution to restoring these dam-
ages is to increase the concentration of urban tree cover (UTC)
in cities.?

Urban trees, widely recognized as green infrastructure, of-
fer a myriad of benefits to city residents, including biophysical,
economic, individual health, and social cohesion.® Trees can
improve air quality by absorbing and intercepting airborne
pollutant particles, such as carbon dioxide, carbon monoxide,
and sulfur dioxide.” Studies suggest that lower concentrations
of pollutant particles exist in areas with a higher tree density.®?
Beyond their role in improving air quality, trees contribute to
increased biodiversity and mitigate stormwater runoft by re-
taining water in their root systems, where excess nutrients, such
as nitrogen and phosphorus, along with other pollutants, can
be filtered and removed.'®!! Increasing urban tree cover densi-
ty has also reduced quantities of surface runoff left over from
storms. However, the capacity of trees to manage stormwater is
species-dependent, with variations in root architecture and leaf
surface area significantly influencing rates of water intercep-
tion, infiltration, and uptake.’?

Simultaneously, urban trees can enhance communities’
overall mental and physical health by promoting time spent
outdoors and fostering social interaction with community

members.” Various research groups have documented a posi-
tive association between resident mental health and urban tree
cover (UTC)." Such findings suggest that trees may reduce
residents’ anxiety levels.” Moreover, increasing the density of
UTC in residential neighborhoods can significantly improve
the overall emotional well-being of a community. In addition to
its benefits towards mental health, urban trees play an equally
significant role in one’s physical health. Urban greenery en-
courages outdoor exercise, which benefits one’s physical health.
Additionally, participating in outdoor activities in a shared
green space can enhance social connectivity among community
members. '

Trees are known to reduce energy costs by providing shade
to homes and increasing property value, making it important
to consider where they are planted.’”'® When trees are planted
strategically, they help lower surface temperatures, often coun-
teracting the formation of heat islands. Heat Islands are urban
areas with higher surface temperatures than nearby commu-
nities. Trees can help reduce heat islands by preventing solar
radiation from being absorbed by sidewalks, buildings, and
other concrete infrastructures.” Studies suggested that in-
creasing average percentage of urban tree cover could decrease
daily surface temperatures and electricity bills.?** For instance,
researchers in South Korea found that increasing urban tree
canopy cover in a neighborhood by 60% lowered the daily av-
erage temperature by 5.23 °C. Thus, the presence of trees in
cities is crucial to fostering a safer and cleaner living environ-
ment. Alongside reducing energy costs, trees can also increase
property values. Researchers have observed a positive associa-
tion between tree cover density and property values.?>* Such a
relationship showcases the economic value of urban trees’ eco-
system services in urban communities.
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Despite its benefits to the natural and human environment,
urban tree cover remains disproportionately distributed in
most American cities.” Urban tree cover disparities within
U.S. cities are often associated with race, income, and popu-
lation density.” As a result, urban communities across the U.S.
that lacked access to urban tree cover were often identified as
either low-income or non-white.?? These findings indicate
that communities of color or low-income overall are less likely
to access the financial, health, and environmental benefits of
urban tree cover.

Urban tree cover (UTC) disparities are primarily linked to
sociopolitical history, especially redlining.’® Redlining was a
discriminatory practice exercised in the 1930s that prevent-
ed people of color or low-income individuals from taking out
loans on property outside their residential neighborhood.?”
Studies suggest that the historical practice of redlining did
have a legacy effect on present-day tree cover in U.S. cities.”?
The Home Owners’ Loan Corporation (HOLC) assigned
grades to neighborhoods to inform investors of their perceived
value, providing the foundation for many redlining policies.
With communities graded D (the HOLC grade for hazard-
ous; heavily redlined) having comparatively lower percent
UTC than A-graded communities (the HOLC grade for best;
least redlined), redlining may have promoted intergenerational
disparities in access to UTC benefits.

Finding answers to the complex question of ‘what drives
urban tree cover inequalities in cities?’ requires long-term ob-
servations of tree cover change across space and time because
some drivers are legacy effects of past activities. Among the
questions that arise when studying UTC disparity is: what was
the tree canopy cover a decade(s) ago? Where in the city dis-
parities exist(ed), and how have these changed over time? In
this context, remote sensing observations, especially modern
and historical aerial images dating back to the early 1930s, can
capture long-term trends in urban tree cover within and among
cities, offering unique opportunities to link tree cover change
with cities’ sociopolitical history. Researchers have successful-
ly utilized remote sensing-based approaches to study UTC
disparities in cities across the globe.? For instance, Merry
et al® quantified the change in urban tree cover in Atlanta,
Georgia, by identifying the total area of tree canopy crowns in
a selected area of each aerial image from 1951 to 2010. Jung
et al® conducted a study in Philadelphia, Pennsylvania, and
Portland, Oregon, using multitemporal satellite imagery to an-
alyze changes in UTC growth. Similarly, Canetti e# a/.** used
high-resolution satellite images (5m) to observe changes in
UTC from 2005 to 2012 in Araucaria Parana, Brazil.

Connecticut is among the many states in the U.S. that offer a
free and publicly accessible aerial imagery archive, with images
dating from 1934 to the present. This extensive time frame,
coupled with time series aerial images, provides a unique op-
portunity to study long-term trends in UTC changes and
offers valuable resources for research. The goal of this proj-
ect was to determine whether time-series aerial imagery (both
modern and historical) could be used to track urban tree cover
changes over decades. We pursued two vertically integrated
objectives, each with specific hypotheses. The first objective

is to understand the drivers of present-day tree cover inequal-
ity and its subsequent consequences. Three research questions
guided this objective: 1) What is the relationship between tree
canopy cover distribution and socioeconomic variables? We
hypothesize that disparities in urban tree cover are linked to
socioeconomically marginalized neighborhoods. 2) How can
the relationship between urban tree canopy cover distribution
and land surface temperature be modeled? We hypothesize
that variations in land surface temperature correlate with tree
canopy cover. 3) What is the relationship between urban tree
canopy cover distribution and human health? We hypothesize
that higher-level health burdens are associated with areas with
less tree canopy coverage.

The second objective explored how historical and modern
aerial imagery could be utilized to analyze changes in urban
tree canopy cover from the early 1950s to 2021. Two research
questions also guided this objective: 1) How can multitem-
poral aerial imagery quantify tree canopy cover change over
time? We hypothesized that these images can effectively map
and study changes in tree canopy cover over time. 2) How
have past discriminatory practices like redlining left legacy ef-
fects on present-day tree canopy cover? We hypothesized that
redlining has been a significant factor in driving current dis-
parities in tree canopy distribution.

B Methods

Study Area:

The study area selected three towns in Connecticut: 1)
Hartford, 2) East Hartford, and 3) West Hartford based on
socioeconomic and demographic criteria, including income,
ethnicity, built-up density, and sociopolitical history (Figure
1). Our analysis was conducted at the census block level with-
in this region (Figure 3). Table 1 provides an overview of the
general characteristics of the census blocks in the study area.

In the 1930s, redlining became widespread in many U.S. cit-
ies, including Hartford. This discriminatory urban planning
practice led to stark disparities between neighborhoods. Non-
white neighborhoods were systematically deprived of essential
resources and were often in far poorer conditions compared
to white neighborhoods. Redlining policies denied people of
color the opportunity to move into white neighborhoods. The
Homeowners Loan Corporation (HOLC) assigned grades
to neighborhoods to guide investors on their value. These
grades ranged from A, representing the “Best” (typically white
neighborhoods), to D, deemed “Hazardous” (often nonwhite
neighborhoods). As a result, neighborhoods graded D may
have received significantly less financial support from the fed-
eral government compared to higher-graded areas.
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Figure 1: Study area map. (a) Town map of the State of Connecticut. (b)
Census blocks of Hartford, East Hartford, and West Hartford (middle). (c)
Redlining zones overlay on census blocks (bottom). Green hollow boxes
show the two candidates’ census blocks (Site-1 and Site-2) selected for
multitemporal image analysis.

Table 1: General characteristics of census blocks from three candidate towns.

Town Number of Census | Population Median Income
Blocks

East Hartford 41 50971 $65,925

Hartford 93 121562 $37,037

West Hartford 62 64034 $132,163

Approach and Data Analysis:

Figure 2 exhibits the overall experimental design. To address
Objective 1, we downloaded demographic data on population,
median income, and ethnicity from the US Census Bureau. We
also obtained data on surface temperature differences, health
burdens, and current tree canopy distribution from American
Forests. Additionally, we used data portals such as Living At-
las and CT GEODATA to identify census-block study sites
in West Hartford and East Hartford and to access data on
HOLC grade overlays within the study area.

We then identified a set of explanatory variables to develop
individual regression models, with tree canopy coverage as the
response variable (Table 2). The explanatory variables included
the percentage of people of color, people in poverty, normal-
ized surface temperature differences, and normalized health

burden.
American CT GEODATA CTECO
Forests Portal UConn MAGIC

Demographic  Tree Equity GIS Redlining Aerial Image
Data Data Data Data Data

Town 5

Equity score, Homeowner Historical,
loan modern

cooperation

grades

Population,
Income,
Ethnicity

Land surface
Temperature,
Health

Census
track/block
boundaries

outlines,
aerial

images

EE]
Analysis !

Spatial
Analysis Analysis
orrelation

s Pl

Analysis

Maps

Objective 1: Q1, Q2, Q3 Objective 2: Q1, Q2

Figure 2: Simplified process diagram of the experimental design and analysis
methods. Q1, Q2, Q3 depict the research questions.

Table 2: Variables selected for linear regression models.

Response Variable Explanatory Variable

% People of Color

% Tree Canopy Coverage | 9, People in Poverty

Normalized temperature difference

Normalized health burden

To address Objective 2, we selected two case-study census
blocks from West Hartford (Site 1 (WH)) and East Hartford
(Site 2 (EH)) for detailed investigation (Figure 3). We chose
these sites to reflect differences in ethnicity, income level, and
the impact of past discriminatory practices, such as redlin-
ing. Site 1 represents a predominantly white, high-income
neighborhood, while Site 2 is a predominantly low-income
neighborhood with a significant population of people of color
(Table 4). According to the Homeowner Loan Corporation
(HOLC) Grades (Table 5), Site 2 falls within a redlined zone.
Until the 1968 Fair Housing Act, this discriminatory practice
withheld financial services from neighborhoods with signifi-
cant racial and ethnic minority populations.

We downloaded aerial images from 1934 to 2021 from the
UConn MAGIC and CTECO databases for both study sites
(Table 3). Accurate calculation of Percent Tree Canopy Cov-
er (PTCC) requires precise delineation of tree crowns, so we
focused on images taken during the leaf-on season (summer)
for analysis (highlighted in Table 3). Our dataset included
time-series images from 1952, 2006, 2014, and 2021.

While the 2006, 2014, and 2021 images were already geo-
referenced, the 1952 images were not. To address this, we used
GIS software (ESRI ArcGISPro, Redlands, CA) to georefer-
ence these images, assigning geographical coordinates relative
to a reference image or map containing a spatial reference sys-
tem.* We identified landmarks such as road intersections and
buildings in reference and candidate images to assign these
coordinates.

Once all images were georeferenced, we randomly gener-
ated 30 points for each site, ensuring a minimum separation
of 30 meters between points. Each point was buffered by 25
meters. Using GIS software, we manually digitized urban tree
canopy cover within each of these circular plots as polygons
(see yellow circles in Figure 4 and Figure 5). This digitization
was performed for each selected year and both study sites. The
PTCC for each circular plot was calculated by dividing the
total average area of tree cover in each site by the total area
of land, then multiplying by 100 (as shown in Equation 1).
Finally, we used a two-sample t-test to compare PTCC be-
tween Site 1 (WH) and Site 2 (EH) for each year, identifying
whether the difference in PTCC was statistically significant
(Figure 10).
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Figure 3: Thirty random sampling locations from each study site: (a) West
Hartford and (b) East Hartford. Randomly selected points are shown in red
dots with 25m buffer zone depicted as yellow circles.

Table 3: Characteristics of multitemporal aerial images. Rows highlighted in
orange indicate the images used to address Objective 2.

Acquisition Leaf Status Spectral Spatial Georeference  Source

Year Bands Resolution Status

1934 Leaf Off Grayscale ~1m No UConn
MAGIC

1952 Leaf On Grayscale ~1m No UConn
MAGIC

1970 Leaf Off Grayscale ~1m No UConn
MAGIC

1986 Leaf Off Grayscale ~1m No UConn
MAGIC

1990 Leaf Off Grayscale ~1m Yes CTECO

2004 Leaf Off Grayscale ~1m Yes NAIP/CTECO

2006 Leaf On Color ~im iYes NAIP/CTECO

2008 Leaf On Color ~1m Yes NAIP/CTECO

2010 Leaf On Color ~im Yes NAIP/CTECO

2012 Leaf On Color ~1m Yes NAIP/CTECO

2014 Leaf On Color ~1m Yes NAIP/CTECO

2016 Leaf On Color ~1m Yes NAIP/CTECO

2018 Leaf On Color ~1m Yes NAIP/CTECO

2021 Leaf On Color ~im Yes NAIP/CTECO

Table 4: Two candidate census blocks used in Objective 2.

Candidate census block Median income ($) | % People of color

Site 1 190,952 15

Site 2 41,640 91

Table 5: Homeowner Loan Corporation Grades.

Zone Grade Grade Descriptions

Site 2

1952

2006

2014

2021

Figure 4: A rendition of time series aerial imagery. Zoomed-in views of two
random locations (red dots) with a 25m buffer zone (yellow circle) selected
from Site-1 (right row) and Site-2 (left row). Tree canopy cover observed
in the East Hartford site did not increase significantly from 1950 to 2021.
Conversely, tree canopy cover increased at a greater rate in the West Hartford
site throughout the same period.

Y

®
e 2006

m— 2014
2021

2006
m— 2014
2021

Il 1952
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(a) (b)
Figure 5: Overlay of manually digitized tree cover extent from multi-year
images of a randomly selected point from (a) Site 1 West Hartford, (b) Site
2 East Hartford. The tree canopy cover in the West Hartford site maintained
consistently high canopy cover during the 1950-2021 period. The East
Hartford site consistently reported low canopy cover throughout this same
period.

AREA

(Trees)

Tree Canopy Cover % = *100

AREA
(Land)
Equation 1: The formula used to calculate the PTCC over time in each
circular plot of the two study sites (Site 1 and Site 2).To calculate PTCC, the
total average area of tree cover in each circular plot must be divided by the total
area of land, and then it should be multiplied by 100.
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B Result and Discussion

Objective 1 Results:

We found a negative correlation between the percentage of
people of color (POC) and the percentage of tree canopy cover
(PTC). As the percentage of POC in a neighborhood increas-
es, the PTC decreases accordingly (Figure 6). The strength
of this association is relatively moderate, with an R-value of
-0.461 and an R? value of 0.212. According to our linear mod-
el, the percentage of people of color explains at least 21.2% of
the variability in tree canopy coverage.

y= -18.69x +42.61
e ST C PercentoT People o7 Color V5 Pereenvage o7 Tee
——Fitind line |% Tree Canopy Cover

30

o3

v 5
%6 of People of Color

(a)

Figure 6: (a) A scatterplot of % people of color vs. %tree canopy cover (b) A
residual plot between %people of color and %tree canopy cover (c) A census
block level map of %people of color. There is a negative correlation between
the percentage of people of color and the percentage of tree canopy cover. As
the percentage of people of color in a community increases the percentage of
tree canopy cover correspondingly decreases.

We also discovered a negative correlation between the per-
centage of people living in poverty and the percentage of tree
canopy cover (Figure 7a). The strength of this association is
relatively moderate, with an R-value of -0.435 and an R® value
of 0.189. According to our linear model, at least 18.9% of the
variability in the percentage of tree canopy cover can be ex-

plained by the percentage of people in poverty.

Figure 7: (a) A scatterplot of %people in poverty vs. %tree canopy cover (b) A
residual plot between %people in poverty and %tree canopy cover (c) A census
block map of %people in poverty. There is a negative correlation between the
percentage of people in poverty and the percentage of tree canopy cover. As
the percentage of people in poverty in a community increases the percentage
of tree canopy cover correspondingly decreases.

Surface temperature difference within a neighborhood sim-
ilarly showcases a negative correlation with the percentage of
tree canopy cover (Figure 8a). The strength of this association
is strong, with an R-value of -0.859 and an R” value of 0.738.
According to our linear model, at least 73.8% of the variability
in the percentage of tree canopy coverage can be explained by
temperature difference.

y=-2.2046x + 47.486

TTree Canopy Cov- ]

(a)

Figure 8: (a) A scatter plot of %surface temp difference vs. %tree canopy
cover (b) A residual plot between %surface temp difference and %tree canopy
cover (c) A census block level map of %temp difference. There is a negative
correlation between the percentage of surface temperature difference and the
percentage of tree canopy cover. As the percentage of surface temperature
difference increases, the percentage of tree canopy cover correspondingly
decreases.

A negative linear association exists between the percentage
of health burden and the percentage of tree cover (Figure 9a).
The strength of this association is relatively moderate, with an
R-value of 0.371 and an R? value of 0.138. According to our
linear model, the percentage of health burden explains at least
13.8% of the variability in tree canopy coverage.

y=-28.046x + 41.227

Figure 9: (a) A scatter plot of %health burden vs. %tree canopy (b) A
residual plot between %health burden and %tree canopy cover (c) A census
block level map of %health burden. There is a negative correlation between
the percentage of health burden and the percentage of tree canopy cover. As
the percentage of health burden increases the percentage of tree canopy cover
correspondingly decreases.

Objective 2 Results:

A pairwise comparison of the percent canopy cover in each
year interval was created to display significant differences be-
tween the two study sites (Figure 10).

In Site 1 (West Hartford), 1952, the mean tree canopy cover
was 47.38%. Over the past 54 years, the value has decreased by
3.28%. By 2006, the tree canopy cover was 44.1%. In 2014, the
average percentage of tree cover slightly increased to 46.35%.
However, in 2021, the mean percentage of tree cover slightly
decreased to 34.63% (Figure 10).

In 1952, the mean tree canopy cover in Site 2 (East Hart-
ford) was 5.91%. Over 54 years, the mean value increased to
12.82%. By 2014, the canopy cover declined by 5.77%, with a
resulting mean percentage of 7.05%. In 2021, the average tree
cover percentage slightly decreased to 5.97%. (Figure 10)
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Figure 10: A comparison of PTCC was calculated based on 30 random plots
from Site 1 and Site 2 from 1952 to 2021. P-values indicate the significance of
pairwise comparisons based on t-tests.

Discussion:

Results suggest that neighborhoods with a higher percent-
age of people of color and a higher percentage of people living
in poverty have lower percentages of tree canopy cover. This
disparity may stem from the high costs of tree planting and
maintenance, which are often beyond the financial means of
marginalized communities. On the other hand, the greater
proportion of rental residences in such neighborhoods may
prevent residents from planting more trees, as the responsibil-
ity for communal afforestation is often unknown. Ultimately,
the legacy effects of policies like redlining could have long-
term impacts on these communities.”

The aerial imagery analysis of Site-2 (EH) revealed that
throughout the 70-year observation period (1952-2021), the
average percentage of tree canopy cover was 7.94%. Converse-
ly, in Site-1 (WH), the mean tree canopy cover was 43.12%.
The tree canopy cover of Site-1 stays relatively consistent
throughout the 70 years. Figure 10 showcases Site-1’s consis-
tently high average percent value and low variability, indicating
prevalent urban tree planting amid increasing urban develop-
ment over this timespan. In contrast, Site-2 (Figure 10) shows
a consistently low canopy cover, high variability, and an overall
negative trend across the 70 years. The results could potentially
highlight the low level of attention paid to tree planting. The
three key variables that differed between the two sites were
ethnic composition, income, and the discriminatory practice
(redlining zone). Site-1 was labeled Zone-D for redlining and
had a high %POC. Site-2 was labeled Zone-A for redlining
and had a high percentage of Caucasian people (low %POC).
Previously, we hypothesized that the mean percentage of tree
canopy cover between the two census blocks for each selected
year would be statistically significant. If these values were sta-
tistically significant, this would suggest that redlining could be
one variable that has a lasting effect on present-day tree cano-
py cover. T-tests were performed yearly for each pair of mean
percent values (1952, 2006, 2014, 2021). For the two mean
values to be significantly different, the p-value must be lower

than 0.05. For each t-test, the p-value was less than 0.05. These

findings suggest that redlining may have a lasting impact on
urban tree cover in communities.

Throughout this project, several aspects could have contrib-
uted to the error. One source of error is related to the gray-scale
aerial images (1952 - 2021; Table 1), which had poor image
quality and spatial resolution of historical images, making it
difficult to visually identify and digitize tree crowns. This often
resulted in spatial uncertainties in the area estimation of tree
canopy cover. One source of error comes from the gray-scale
aerial images (1952-2021; Table 1), which had poor image
quality and low spatial resolution, making it difficult to visu-
ally identify and digitize tree crowns. These limitations caused
spatial uncertainties in estimating tree canopy cover. Therefore,
image quality can impact the detection accuracy of urban tree
cover. The process of georeferencing was also a potential source
of error. We found it difficult to locate long-term (time-invari-
ant) ground control points, such as roads or buildings, in many
of the 1952 time series images. A further step to enhance map
accuracy could have involved field validation. Image-based area
measurements can be compared directly with in situ field ob-
servations.

The sample size of buffered points across both study sites
may have also been another source of error. For each study site,
30 points were randomly distributed and buffered to estimate
tree canopy cover. An average of these 30 points then deter-
mined the percentage of urban tree cover in each study area.
The accuracy of this calculation could have been higher with
a larger sample size at each site. Additional study sites in East
Hartford and West Hartford with similar demographic and
population criteria would also have strengthened the analysis.
By expanding in this way, the results would provide more ev-
idence of the legacy effect of redlining on present-day urban
tree cover.

Aerial imagery serves as a powerful ‘citizen science’ data
source to educate the public. The visual presentation of urban
tree cover growth over time, combined with the impact of de-
mographic and sociopolitical (redlining) variables on access
to tree cover, effectively conveys that urban tree cover dispro-
portionately affects communities of color. Additionally, aerial
imagery of urban tree cover can pinpoint areas in neighbor-
hoods where further tree planting is needed. This approach can
be helpful for communities that lack access to tree cover and
have decided to integrate greenery to a greater extent.

B Conclusion

This study demonstrated that urban tree canopy cover is
negatively correlated with the following variables: ethnicity, in-
come, surface temperature, and health burden. Neighborhoods
with high percentages of people of color experience noticeably
higher summer temperatures compared to predominantly white
neighborhoods. Similarly, health burden inversely associates
with tree cover, disproportionately affecting low-income and
minority communities. Results from Objective 2 showed that
researchers can quantify urban tree cover using multitemporal
imagery. Over the past 70 years, the study sites in East Hartford
have consistently exhibited low canopy cover, whereas the West
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Hartford site has maintained consistently high canopy cover.
The tree canopy between the two sites differed statistically in
all years, suggesting that past discriminatory practices, such as
redlining, may have lasting effects on present-day disparities
in tree canopy cover. Visualizing changes in urban tree canopy
cover alongside socioeconomic variables raises awareness of the
disparities faced by marginalized and formerly redlined com-
munities. Additionally, using aerial imagery to identify areas
for future tree planting can be highly beneficial. A potential
future direction for this project involves expanding similar
imagery analysis to other urban communities in Connecticut.
Developing an app to educate the public about tree cover dis-
parities and assist with tree planting programs would further
enhance community engagement and action.
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