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ABSTRACT: The goal of this study is to model the driving factors behind urban tree canopy cover disparities in West Hartford 
(WH), East Hartford (EH), and Hartford (HT), Connecticut. The first objective involved a statistical analysis using socioeconomic 
variables and the current percent tree canopy cover (PTCC) from 197 census blocks in WH, EH, and HT. The second objective 
entailed performing a geospatial analysis using 70-year time series aerial imagery (1952-2021) for two case-study census blocks in 
EH and WH. The results from the census block-level analysis of WH, EH, and HT revealed a negative correlation between the 
PTCC and ethnicity (R = -0.461), PTCC and income level (R = -0.435), PTCC and land surface temperature (R = -0.859), and 
PTCC and health burden (R = -0.371). Additionally, the aerial image analysis results between the two case-study sites revealed a 
significant difference in PTCC (p < 0.05) for all years considered. These findings support our hypothesis that past discriminatory 
practices, such as redlining, may have a legacy effect on present-day tree canopy cover.  
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�   Introduction
Urban populations are rising, posing new challenges in a 

changing climate. Already, over 55% of the global population 
resides in cities.1 In the United States, cities harbor nearly 81% 
of the population.2 Increased urbanization can lead to diverse 
employment opportunities, but has also contributed to sig-
nificant environmental degradation. Urbanization has led to 
heightened air and water pollution, habitat loss, land degrada-
tion, and greenhouse gas emissions.3 Studies have shown that 
these conditions significantly affect the health and well-being 
of urban communities.4 A key solution to restoring these dam-
ages is to increase the concentration of urban tree cover (UTC) 
in cities.5

Urban trees, widely recognized as green infrastructure, of-
fer a myriad of benefits to city residents, including biophysical, 
economic, individual health, and social cohesion.6 Trees can 
improve air quality by absorbing and intercepting airborne 
pollutant particles, such as carbon dioxide, carbon monoxide, 
and sulfur dioxide.7 Studies suggest that lower concentrations 
of pollutant particles exist in areas with a higher tree density.8,9 
Beyond their role in improving air quality, trees contribute to 
increased biodiversity and mitigate stormwater runoff by re-
taining water in their root systems, where excess nutrients, such 
as nitrogen and phosphorus, along with other pollutants, can 
be filtered and removed.10,11 Increasing urban tree cover densi-
ty has also reduced quantities of surface runoff left over from 
storms. However, the capacity of trees to manage stormwater is 
species-dependent, with variations in root architecture and leaf 
surface area significantly influencing rates of water intercep-
tion, infiltration, and uptake.12

Simultaneously, urban trees can enhance communities’ 
overall mental and physical health by promoting time spent 
outdoors and fostering social interaction with community 

members.13 Various research groups have documented a posi-
tive association between resident mental health and urban tree 
cover (UTC).14 Such findings suggest that trees may reduce 
residents’ anxiety levels.15 Moreover, increasing the density of 
UTC in residential neighborhoods can significantly improve 
the overall emotional well-being of a community. In addition to 
its benefits towards mental health, urban trees play an equally 
significant role in one’s physical health. Urban greenery en-
courages outdoor exercise, which benefits one’s physical health. 
Additionally, participating in outdoor activities in a shared 
green space can enhance social connectivity among community 
members.16

Trees are known to reduce energy costs by providing shade 
to homes and increasing property value, making it important 
to consider where they are planted.17,18 When trees are planted 
strategically, they help lower surface temperatures, often coun-
teracting the formation of heat islands. Heat Islands are urban 
areas with higher surface temperatures than nearby commu-
nities. Trees can help reduce heat islands by preventing solar 
radiation from being absorbed by sidewalks, buildings, and 
other concrete infrastructures.19 Studies suggested that in-
creasing average percentage of urban tree cover could decrease 
daily surface temperatures and electricity bills.20,21 For instance, 
researchers in South Korea found that increasing urban tree 
canopy cover in a neighborhood by 60% lowered the daily av-
erage temperature by 5.23 °C. Thus, the presence of trees in 
cities is crucial to fostering a safer and cleaner living environ-
ment. Alongside reducing energy costs, trees can also increase 
property values. Researchers have observed a positive associa-
tion between tree cover density and property values.22,23 Such a 
relationship showcases the economic value of urban trees’ eco-
system services in urban communities.
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Despite its benefits to the natural and human environment, 
urban tree cover remains disproportionately distributed in 
most American cities.24 Urban tree cover disparities within 
U.S. cities are often associated with race, income, and popu-
lation density.7 As a result, urban communities across the U.S. 
that lacked access to urban tree cover were often identified as 
either low-income or non-white.25,26 These findings indicate 
that communities of color or low-income overall are less likely 
to access the financial, health, and environmental benefits of 
urban tree cover.

Urban tree cover (UTC) disparities are primarily linked to 
sociopolitical history, especially redlining.10 Redlining was a 
discriminatory practice exercised in the 1930s that prevent-
ed people of color or low-income individuals from taking out 
loans on property outside their residential neighborhood.27 
Studies suggest that the historical practice of redlining did 
have a legacy effect on present-day tree cover in U.S. cities.7,28 
The Home Owners’ Loan Corporation (HOLC) assigned 
grades to neighborhoods to inform investors of their perceived 
value, providing the foundation for many redlining policies. 
With communities graded D (the HOLC grade for hazard-
ous; heavily redlined) having comparatively lower percent 
UTC than A-graded communities (the HOLC grade for best; 
least redlined), redlining may have promoted intergenerational 
disparities in access to UTC benefits.

Finding answers to the complex question of ‘what drives 
urban tree cover inequalities in cities?’ requires long-term ob-
servations of tree cover change across space and time because 
some drivers are legacy effects of past activities. Among the 
questions that arise when studying UTC disparity is: what was 
the tree canopy cover a decade(s) ago? Where in the city dis-
parities exist(ed), and how have these changed over time? In 
this context, remote sensing observations, especially modern 
and historical aerial images dating back to the early 1930s, can 
capture long-term trends in urban tree cover within and among 
cities, offering unique opportunities to link tree cover change 
with cities’ sociopolitical history. Researchers have successful-
ly utilized remote sensing-based approaches to study UTC 
disparities in cities across the globe.29–31 For instance, Merry 
et al.32 quantified the change in urban tree cover in Atlanta, 
Georgia, by identifying the total area of tree canopy crowns in 
a selected area of each aerial image from 1951 to 2010. Jung 
et al.33 conducted a study in Philadelphia, Pennsylvania, and 
Portland, Oregon, using multitemporal satellite imagery to an-
alyze changes in UTC growth. Similarly, Canetti et al.34 used 
high-resolution satellite images (5m) to observe changes in 
UTC from 2005 to 2012 in Araucaria Parana, Brazil.

Connecticut is among the many states in the U.S. that offer a 
free and publicly accessible aerial imagery archive, with images 
dating from 1934 to the present. This extensive time frame, 
coupled with time series aerial images, provides a unique op-
portunity to study long-term trends in UTC changes and 
offers valuable resources for research. The goal of this proj-
ect was to determine whether time-series aerial imagery (both 
modern and historical) could be used to track urban tree cover 
changes over decades. We pursued two vertically integrated 
objectives, each with specific hypotheses. The first objective 

is to understand the drivers of present-day tree cover inequal-
ity and its subsequent consequences. Three research questions 
guided this objective: 1) What is the relationship between tree 
canopy cover distribution and socioeconomic variables? We 
hypothesize that disparities in urban tree cover are linked to 
socioeconomically marginalized neighborhoods. 2) How can 
the relationship between urban tree canopy cover distribution 
and land surface temperature be modeled? We hypothesize 
that variations in land surface temperature correlate with tree 
canopy cover. 3) What is the relationship between urban tree 
canopy cover distribution and human health? We hypothesize 
that higher-level health burdens are associated with areas with 
less tree canopy coverage.

The second objective explored how historical and modern 
aerial imagery could be utilized to analyze changes in urban 
tree canopy cover from the early 1950s to 2021. Two research 
questions also guided this objective: 1) How can multitem-
poral aerial imagery quantify tree canopy cover change over 
time? We hypothesized that these images can effectively map 
and study changes in tree canopy cover over time. 2) How 
have past discriminatory practices like redlining left legacy ef-
fects on present-day tree canopy cover? We hypothesized that 
redlining has been a significant factor in driving current dis-
parities in tree canopy distribution.

�   Methods
Study Area:
The study area selected three towns in Connecticut: 1) 

Hartford, 2) East Hartford, and 3) West Hartford based on 
socioeconomic and demographic criteria, including income, 
ethnicity, built-up density, and sociopolitical history (Figure 
1). Our analysis was conducted at the census block level with-
in this region (Figure 3). Table 1 provides an overview of the 
general characteristics of the census blocks in the study area.

In the 1930s, redlining became widespread in many U.S. cit-
ies, including Hartford. This discriminatory urban planning 
practice led to stark disparities between neighborhoods. Non-
white neighborhoods were systematically deprived of essential 
resources and were often in far poorer conditions compared 
to white neighborhoods. Redlining policies denied people of 
color the opportunity to move into white neighborhoods. The 
Homeowners Loan Corporation (HOLC) assigned grades 
to neighborhoods to guide investors on their value. These 
grades ranged from A, representing the “Best” (typically white 
neighborhoods), to D, deemed “Hazardous” (often nonwhite 
neighborhoods). As a result, neighborhoods graded D may 
have received significantly less financial support from the fed-
eral government compared to higher-graded areas.
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Approach and Data Analysis:
Figure 2 exhibits the overall experimental design. To address 

Objective 1, we downloaded demographic data on population, 
median income, and ethnicity from the US Census Bureau. We 
also obtained data on surface temperature differences, health 
burdens, and current tree canopy distribution from American 
Forests. Additionally, we used data portals such as Living At-
las and CT GEODATA to identify census-block study sites 
in West Hartford and East Hartford and to access data on 
HOLC grade overlays within the study area.

We then identified a set of explanatory variables to develop 
individual regression models, with tree canopy coverage as the 
response variable (Table 2). The explanatory variables included 
the percentage of people of color, people in poverty, normal-
ized surface temperature differences, and normalized health 
burden.

To address Objective 2, we selected two case-study census 
blocks from West Hartford (Site 1 (WH)) and East Hartford 
(Site 2 (EH)) for detailed investigation (Figure 3). We chose 
these sites to reflect differences in ethnicity, income level, and 
the impact of past discriminatory practices, such as redlin-
ing. Site 1 represents a predominantly white, high-income 
neighborhood, while Site 2 is a predominantly low-income 
neighborhood with a significant population of people of color 
(Table 4). According to the Homeowner Loan Corporation 
(HOLC) Grades (Table 5), Site 2 falls within a redlined zone. 
Until the 1968 Fair Housing Act, this discriminatory practice 
withheld financial services from neighborhoods with signifi-
cant racial and ethnic minority populations.

We downloaded aerial images from 1934 to 2021 from the 
UConn MAGIC and CTECO databases for both study sites 
(Table 3). Accurate calculation of Percent Tree Canopy Cov-
er (PTCC) requires precise delineation of tree crowns, so we 
focused on images taken during the leaf-on season (summer) 
for analysis (highlighted in Table 3). Our dataset included 
time-series images from 1952, 2006, 2014, and 2021.

While the 2006, 2014, and 2021 images were already geo-
referenced, the 1952 images were not. To address this, we used 
GIS software (ESRI ArcGISPro, Redlands, CA) to georefer-
ence these images, assigning geographical coordinates relative 
to a reference image or map containing a spatial reference sys-
tem.35 We identified landmarks such as road intersections and 
buildings in reference and candidate images to assign these 
coordinates.

Once all images were georeferenced, we randomly gener-
ated 30 points for each site, ensuring a minimum separation 
of 30 meters between points. Each point was buffered by 25 
meters. Using GIS software, we manually digitized urban tree 
canopy cover within each of these circular plots as polygons 
(see yellow circles in Figure 4 and Figure 5). This digitization 
was performed for each selected year and both study sites. The 
PTCC for each circular plot was calculated by dividing the 
total average area of tree cover in each site by the total area 
of land, then multiplying by 100 (as shown in Equation 1). 
Finally, we used a two-sample t-test to compare PTCC be-
tween Site 1 (WH) and Site 2 (EH) for each year, identifying 
whether the difference in PTCC was statistically significant 
(Figure 10).
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Figure 1. Study area map. (a) Town map of the State of Connecticut. (b) Census blocks of Hartford, East 
Hartford, and West Hartford (middle). (c) Redlining zones overlain on census blocks (bottom). Green 
hollow boxes show the two candidates’ census blocks (Site-1 and Site-2) selected for multitemporal 
image analysis. 
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Figure 1: Study area map. (a) Town map of the State of Connecticut. (b) 
Census blocks of Hartford, East Hartford, and West Hartford (middle). (c) 
Redlining zones overlay on census blocks (bottom). Green hollow boxes 
show the two candidates’ census blocks (Site-1 and Site-2) selected for 
multitemporal image analysis.

Figure 2: Simplified process diagram of the experimental design and analysis 
methods. Q1, Q2, Q3 depict the research questions.

Table 1: General characteristics of census blocks from three candidate towns.

Table 2: Variables selected for linear regression models.

 

Figure 2. Simplified process diagram of the experimental design and analysis methods. Q1, Q2, Q3 
depict the research questions. 
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Figure 3. Thirty random sampling locations from each study site: (a) West Hartford and (b) East Hartford. 
Randomly selected points are shown in red dots with 25m buffer zone depicted as yellow circles. 

 
Figure 3: Thirty random sampling locations from each study site: (a) West 
Hartford and (b) East Hartford. Randomly selected points are shown in red 
dots with 25m buffer zone depicted as yellow circles.

Figure 4: A rendition of time series aerial imagery. Zoomed-in views of two 
random locations (red dots) with a 25m buffer zone (yellow circle) selected 
from Site-1 (right row) and Site-2 (left row). Tree canopy cover observed 
in the East Hartford site did not increase significantly from 1950 to 2021. 
Conversely, tree canopy cover increased at a greater rate in the West Hartford 
site throughout the same period.

Figure 5: Overlay of manually digitized tree cover extent from multi-year 
images of a randomly selected point from (a) Site 1 West Hartford, (b) Site 
2 East Hartford. The tree canopy cover in the West Hartford site maintained 
consistently high canopy cover during the 1950-2021 period. The East 
Hartford site consistently reported low canopy cover throughout this same 
period.

Equation 1: The formula used to calculate the PTCC over time in each 
circular plot of the two study sites (Site 1 and Site 2). To calculate PTCC, the 
total average area of tree cover in each circular plot must be divided by the total 
area of land, and then it should be multiplied by 100.

Table 3: Characteristics of multitemporal aerial images. Rows highlighted in 
orange indicate the images used to address Objective 2.

Table 4: Two candidate census blocks used in Objective 2.

Table 5: Homeowner Loan Corporation Grades.
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Figure 4. A rendition of time series aerial imagery. Zoomed-in views of two random 
locations (red dots) with 25m buffer zone (yellow circle) selected from Site-1 (right 
row) and Site-2 (left row). 
Tree canopy cover observed in the East Hartford site did not increase significantly 
within the 1950-2021 period. Conversely, tree canopy cover was observed to 
increase at a greater rate in the West Hartford site throughout the same time period. 
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Figure 5. Overlay of manually digitized tree cover extent from multi-
year images of a randomly selected point from (a) Site 1 West 
Hartford, (b) Site 2 East Hartford   
The tree canopy cover in the West Hartford site maintained 
consistently high canopy cover during the 1950-2021 period. While 
the East Hartford site consistently reported low canopy cover 
throughout this same time span. 
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A negative linear association exists between the percentage 
of health burden and the percentage of tree cover (Figure 9a). 
The strength of this association is relatively moderate, with an 
R-value of 0.371 and an R2 value of 0.138. According to our 
linear model, the percentage of health burden explains at least 
13.8% of the variability in tree canopy coverage.

Objective 2 Results:
A pairwise comparison of the percent canopy cover in each 

year interval was created to display significant differences be-
tween the two study sites (Figure 10).

In Site 1 (West Hartford), 1952, the mean tree canopy cover 
was 47.38%. Over the past 54 years, the value has decreased by 
3.28%. By 2006, the tree canopy cover was 44.1%. In 2014, the 
average percentage of tree cover slightly increased to 46.35%. 
However, in 2021, the mean percentage of tree cover slightly 
decreased to 34.63% (Figure 10).

In 1952, the mean tree canopy cover in Site 2 (East Hart-
ford) was 5.91%. Over 54 years, the mean value increased to 
12.82%. By 2014, the canopy cover declined by 5.77%, with a 
resulting mean percentage of 7.05%. In 2021, the average tree 
cover percentage slightly decreased to 5.97%. (Figure 10)

�   Result and Discussion 
Objective 1 Results:
We found a negative correlation between the percentage of 

people of color (POC) and the percentage of tree canopy cover 
(PTC). As the percentage of POC in a neighborhood increas-
es, the PTC decreases accordingly (Figure 6). The strength 
of this association is relatively moderate, with an R-value of 
-0.461 and an R2 value of 0.212. According to our linear mod-
el, the percentage of people of color explains at least 21.2% of 
the variability in tree canopy coverage.

We also discovered a negative correlation between the per-
centage of people living in poverty and the percentage of tree 
canopy cover (Figure 7a). The strength of this association is 
relatively moderate, with an R-value of -0.435 and an R2 value 
of 0.189. According to our linear model, at least 18.9% of the 
variability in the percentage of tree canopy cover can be ex-
plained by the percentage of people in poverty.

Surface temperature difference within a neighborhood sim-
ilarly showcases a negative correlation with the percentage of 
tree canopy cover (Figure 8a). The strength of this association 
is strong, with an R-value of -0.859 and an R2 value of 0.738. 
According to our linear model, at least 73.8% of the variability 
in the percentage of tree canopy coverage can be explained by 
temperature difference.
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Figure 6: (a) A scatterplot of % people of color vs. %tree canopy cover (b) A 
residual plot between %people of color and %tree canopy cover (c) A census 
block level map of %people of color. There is a negative correlation between 
the percentage of people of color and the percentage of tree canopy cover. As 
the percentage of people of color in a community increases the percentage of 
tree canopy cover correspondingly decreases.

Figure 7: (a) A scatterplot of %people in poverty vs. %tree canopy cover (b) A 
residual plot between %people in poverty and %tree canopy cover (c) A census 
block map of %people in poverty. There is a negative correlation between the 
percentage of people in poverty and the percentage of tree canopy cover. As 
the percentage of people in poverty in a community increases the percentage 
of tree canopy cover correspondingly decreases.

Figure 8: (a) A scatter plot of %surface temp difference vs. %tree canopy 
cover (b) A residual plot between %surface temp difference and %tree canopy 
cover (c) A census block level map of %temp difference. There is a negative 
correlation between the percentage of surface temperature difference and the 
percentage of tree canopy cover. As the percentage of surface temperature 
difference increases, the percentage of tree canopy cover correspondingly 
decreases.

Figure 9: (a) A scatter plot of %health burden vs. %tree canopy (b) A 
residual plot between %health burden and %tree canopy cover (c) A census 
block level map of %health burden. There is a negative correlation between 
the percentage of health burden and the percentage of tree canopy cover. As 
the percentage of health burden increases the percentage of tree canopy cover 
correspondingly decreases.
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Figure 6. (a) A scatterplot of % people of color vs. %tree canopy cover (b) A residual plot between 
%people of color and %tree canopy cover (c) A census block level map of %people of color 
There is a negative correlation between percentage of people of color and the percentage of tree canopy 
cover. As the percentage of people of color in a community increases the percentage of tree canopy 
cover correspondingly decreases. 
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Figure 7. (a) A scatterplot of %people in poverty vs. %tree canopy cover (b) A residual plot between 
%people in poverty and %tree canopy cover (c) A census block map of %people in poverty 
There is a negative correlation between the percentage of people in poverty and the percentage of tree 
canopy cover. As the percentage of people in poverty in a community increases the percentage of tree 
canopy cover correspondingly decreases. 
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Figure 8. (a) A scatter plot of %surface temp difference vs. %tree canopy cover (b) A residual plot 
between %surface temp difference and %tree canopy cover (c) A census block level map of %temp 
difference 
There is a negative correlation between the percentage of surface temperature difference and the 
percentage of tree canopy cover. As the percentage of surface temperature difference increases, the 
percentage of tree canopy cover correspondingly decreases. 
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Figure 9. (a) A scatter plot of %health burden vs. %tree canopy (b) A residual plot between %health 
burden and %tree canopy cover (c) A census block level map of %health burden 
There is a negative correlation between the percentage of health burden and the percentage of tree 
canopy cover. As the percentage of health burden increases the percentage of tree canopy cover 
correspondingly decreases. 
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Discussion:
Results suggest that neighborhoods with a higher percent-

age of people of color and a higher percentage of people living 
in poverty have lower percentages of tree canopy cover. This 
disparity may stem from the high costs of tree planting and 
maintenance, which are often beyond the financial means of 
marginalized communities. On the other hand, the greater 
proportion of rental residences in such neighborhoods may 
prevent residents from planting more trees, as the responsibil-
ity for communal afforestation is often unknown. Ultimately, 
the legacy effects of policies like redlining could have long-
term impacts on these communities.27

The aerial imagery analysis of Site-2 (EH) revealed that 
throughout the 70-year observation period (1952-2021), the 
average percentage of tree canopy cover was 7.94%. Converse-
ly, in Site-1 (WH), the mean tree canopy cover was 43.12%. 
The tree canopy cover of Site-1 stays relatively consistent 
throughout the 70 years. Figure 10 showcases Site-1’s consis-
tently high average percent value and low variability, indicating 
prevalent urban tree planting amid increasing urban develop-
ment over this timespan. In contrast, Site-2 (Figure 10) shows 
a consistently low canopy cover, high variability, and an overall 
negative trend across the 70 years. The results could potentially 
highlight the low level of attention paid to tree planting. The 
three key variables that differed between the two sites were 
ethnic composition, income, and the discriminatory practice 
(redlining zone). Site-1 was labeled Zone-D for redlining and 
had a high %POC. Site-2 was labeled Zone-A for redlining 
and had a high percentage of Caucasian people (low %POC). 
Previously, we hypothesized that the mean percentage of tree 
canopy cover between the two census blocks for each selected 
year would be statistically significant. If these values were sta-
tistically significant, this would suggest that redlining could be 
one variable that has a lasting effect on present-day tree cano-
py cover. T-tests were performed yearly for each pair of mean 
percent values (1952, 2006, 2014, 2021). For the two mean 
values to be significantly different, the p-value must be lower 
than 0.05. For each t-test, the p-value was less than 0.05. These 

findings suggest that redlining may have a lasting impact on 
urban tree cover in communities.

Throughout this project, several aspects could have contrib-
uted to the error. One source of error is related to the gray-scale 
aerial images (1952 - 2021; Table 1), which had poor image 
quality and spatial resolution of historical images, making it 
difficult to visually identify and digitize tree crowns. This often 
resulted in spatial uncertainties in the area estimation of tree 
canopy cover. One source of error comes from the gray-scale 
aerial images (1952–2021; Table 1), which had poor image 
quality and low spatial resolution, making it difficult to visu-
ally identify and digitize tree crowns. These limitations caused 
spatial uncertainties in estimating tree canopy cover. Therefore, 
image quality can impact the detection accuracy of urban tree 
cover. The process of georeferencing was also a potential source 
of error. We found it difficult to locate long-term (time-invari-
ant) ground control points, such as roads or buildings, in many 
of the 1952 time series images. A further step to enhance map 
accuracy could have involved field validation. Image-based area 
measurements can be compared directly with in situ field ob-
servations.

The sample size of buffered points across both study sites 
may have also been another source of error. For each study site, 
30 points were randomly distributed and buffered to estimate 
tree canopy cover. An average of these 30 points then deter-
mined the percentage of urban tree cover in each study area. 
The accuracy of this calculation could have been higher with 
a larger sample size at each site. Additional study sites in East 
Hartford and West Hartford with similar demographic and 
population criteria would also have strengthened the analysis. 
By expanding in this way, the results would provide more ev-
idence of the legacy effect of redlining on present-day urban 
tree cover.

Aerial imagery serves as a powerful ‘citizen science’ data 
source to educate the public. The visual presentation of urban 
tree cover growth over time, combined with the impact of de-
mographic and sociopolitical (redlining) variables on access 
to tree cover, effectively conveys that urban tree cover dispro-
portionately affects communities of color. Additionally, aerial 
imagery of urban tree cover can pinpoint areas in neighbor-
hoods where further tree planting is needed. This approach can 
be helpful for communities that lack access to tree cover and 
have decided to integrate greenery to a greater extent.

�   Conclusion 
This study demonstrated that urban tree canopy cover is 

negatively correlated with the following variables: ethnicity, in-
come, surface temperature, and health burden. Neighborhoods 
with high percentages of people of color experience noticeably 
higher summer temperatures compared to predominantly white 
neighborhoods. Similarly, health burden inversely associates 
with tree cover, disproportionately affecting low-income and 
minority communities. Results from Objective 2 showed that 
researchers can quantify urban tree cover using multitemporal 
imagery. Over the past 70 years, the study sites in East Hartford 
have consistently exhibited low canopy cover, whereas the West 
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Figure 10: A comparison of PTCC was calculated based on 30 random plots 
from Site 1 and Site 2 from 1952 to 2021. P-values indicate the significance of 
pairwise comparisons based on t-tests.
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Hartford site has maintained consistently high canopy cover. 
The tree canopy between the two sites differed statistically in 
all years, suggesting that past discriminatory practices, such as 
redlining, may have lasting effects on present-day disparities 
in tree canopy cover. Visualizing changes in urban tree canopy 
cover alongside socioeconomic variables raises awareness of the 
disparities faced by marginalized and formerly redlined com-
munities. Additionally, using aerial imagery to identify areas 
for future tree planting can be highly beneficial. A potential 
future direction for this project involves expanding similar 
imagery analysis to other urban communities in Connecticut. 
Developing an app to educate the public about tree cover dis-
parities and assist with tree planting programs would further 
enhance community engagement and action.
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