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ABSTRACT: Real-time monitoring systems are being increasingly utilized as an option to protect vulnerable populations, 
but current solutions heavily depend on sensors that reduce effectiveness and create privacy concerns. The proposed SafeSight 
system addresses this gap by applying an array of models to perform scene understanding, object detection, action recognition, 
and motion anomaly detection to enable contextual privacy masking. We evaluated SafeSight with benchmark datasets (UCF50, 
GMDCSA) and live video feeds. It achieves up to 0.867 F1 score for sedentary activity recognition and over 90% scene context 
accuracy within household environments. The use of artificial intelligence through deep learning and vision language models 
revolutionizes live video analysis to make accurate decisions with temporal scene analysis, static and dynamic events, and privacy-
protecting contoured filters for sensitive locations. SafeSight could feasibly expedite alerts while monitoring high-risk situations 
where medical attention is required immediately, eventually being scaled to larger scenarios for healthcare, education, and public 
safety.  

KEYWORDS: Robotics and Intelligent Machines, Machine Learning, Health Monitoring, Vision Language Model, 
Ultralytics. 

�   Introduction
Real-time video analysis systems are becoming an increas-

ingly valuable tool for monitoring the safety and well-being of 
vulnerable populations, including senior citizens, unattended 
children, and individuals with health conditions. For elderly 
individuals living alone at home or in assisted care facilities, 
these systems are critical for detecting potentially fatal inci-
dents and alerting the caregivers.1 Similarly, young children at 
home or in childcare settings benefit from continuous super-
vision to prevent and respond to accidents and emergencies. 
Beyond individual care, real-time monitoring has applications 
in law enforcement and institutional settings, such as detecting 
disturbances in prisons or ensuring safety in public areas. These 
systems offer situational awareness, enabling caregivers, fami-
ly members, or authorized personnel to remotely track current 
activity within the monitored property.

Timely intervention during medical emergencies, such as 
falls, seizures, or strokes, can significantly improve survival and 
recovery outcomes.2 In the United States alone, over 14 mil-
lion people, primarily seniors over 65, experience falls annually. 
Similarly, strokes impact approximately 795,000 individuals 
each year, and rapid intervention within the first hour is criti-
cal to reducing complications. Seizures lasting longer than five 
minutes also require immediate medical attention. Effective 
monitoring systems must be capable of detecting both static 
events, such as lying down or sitting, and dynamic events, such 
as walking or suddenly collapsing, to enable rapid response.

There are various challenges associated with real-time 
monitoring systems. They raise serious concerns about pre-
serving the user’s privacy, especially in sensitive locations of 
the property, like bedrooms or bathrooms, where supervision 
of vulnerable populations is still required. Another challenge is 

that these systems often over-trigger alerts for non-emergency 
events or fail to raise on-time alerts for genuine emergencies. 
Existing systems often use a mix of wearable and infrastruc-
ture-based sensors.3 Wearables such as accelerometers and 
heart rate monitors can provide continuous physiological 
data,4 but their reliability is limited by battery constraints, in-
consistent use, environmental sensitivity, and user discomfort 
or forgetfulness.5,6 Infrastructure-based systems often require a 
high computational load, delaying detection and reducing the 
overall effectiveness of interventions.

To overcome these challenges and address user needs, re-
al-time alerting systems must maintain a balance between 
responsiveness and user privacy. Monitoring should not result 
in a sense of constant surveillance, and alerts should only be 
triggered when necessary, as long as any privacy measures are 
taken.

Infrastructure-based sensors, such as cameras, depth sensors, 
radar, and LiDAR, offer more consistent and non-intrusive 
monitoring by capturing visual and spatial data without requir-
ing the subject to wear any devices. In the SafeSight project, we 
adopt camera-based infrastructure sensors to obtain detailed 
visual input and contextual awareness across monitored spac-
es. Computer vision techniques, including object detection, 
tracking, pose estimation, and activity recognition, form the 
foundation for analyzing real-time video streams. By leverag-
ing deep learning frameworks such as TensorFlow,7 PyTorch,8 
YOLO,9 and OpenCV,10 SafeSight builds an accurate and 
scalable monitoring system.

To further enhance performance and contextual understand-
ing, SafeSight incorporates Vision-Language Models (VLMs) 
using tools such as Olama. Unlike traditional deep learning 
models, VLMs are capable of reasoning across both visual and 
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textual data. They can generalize to a broad range of objects 
and actions beyond those seen during training and perform 
complex tasks like visual question answering and scene in-
terpretation. This integration enables SafeSight to deliver a 
context-aware, privacy-conscious, and responsive solution for 
real-time safety monitoring. To achieve this, we incorporate 
several key contributions:

Scene-aware privacy-preserving real-time alert generation: We 
developed algorithms to identify and alert on unusual events 
while minimizing the exposure of sensitive information.

LLM-driven rules engine: We utilized large language models 
to define and enforce rules about valid and invalid behaviors 
within a given scene.

Real-time assessment of mobility state: We developed tech-
niques to assess an individual's mobility state independently of 
their current posture, enabling the detection of subtle changes 
in activity levels.

Related Works:
Within previous studies regarding real-time monitoring 

systems for vulnerable populations, wearable sensors have been 
researched for their ability to detect falls and monitor vitals. 
For instance, fall detection systems that use accelerometers 
exhibited high accuracy in controlled environments. How-
ever, in real-world scenarios, there are other factors, such as 
user mobility and battery life, that could limit success.11 Ad-
ditionally, wearable devices such as heart rate monitors and 
smartwatches can provide continuous health data, but become 
less dependable due to the user’s forgetfulness and improper 
placement.12 Although there are significant advancements in 
wearable technology, the continued limitations stress the need 
for solutions that rely on infrastructure-based monitoring in-
stead of wearable sensors. Systems combining wearable sensors 
with environmental context have shown improved accuracy 
and reliability in detecting anomalies.3

Low-resolution infrared arrays with 3D convolutional neu-
ral networks achieve accurate privacy-preserving fall detection, 
but struggle in cluttered environments.13 Optical elements may 
reduce identifiable data yet compromise contextual details.14 
Privacy-preserving cameras and neuromorphic sensors limit 
visual information, but face challenges in dynamic scenes.15-16

Although depth sensors, radar sensors, or LiDAR sensors 
can be used to create detailed 3D maps of environments, 
these technologies are typically expensive and complex to im-
plement on a larger scale.17 By using camera-based systems 
and computer vision techniques, many of these limitations 
can be reduced or eliminated. Frameworks for deep learning, 
such as TensorFlow, MediaPipe,18 and YOLO, enable appli-
cations related to human activity recognition and anomalous 
event detection. When these techniques are used together 
with depth data, they create strong detection systems in ob-
structed environments.19 Vision-language models (VLMs) 
have recently been used for real-time understanding using 
camera-based systems. The coordination between visual and 
textual data allows for a more sophisticated understanding and 
reasoning of the conditions being monitored.20 The advantage 
of these models is that they use joint representations of images 

and texts, allowing for increased detection of anomalies and 
behavior analysis. Empirical works assert that VLMs indeed 
enhance performance in important tasks like visual question 
answering and scene interpretation, both of which are crucial 
for real-time monitoring.21

In addition to detection accuracy, privacy preservation is a 
critical focus in the field. Some existing methods include edge 
processing and encrypted data transmission, which can pro-
tect user privacy while effectively running the system.22 The 
SafeSight project uses VLMs, deep learning methods, and 
appropriate privacy-preserving methods to integrate a reliable 
monitoring system that effectively addresses the drawbacks of 
existing solutions.

Existing monitoring approaches face trade-offs between 
accuracy, cost, and privacy. While wearable sensors capture 
physiological data, they suffer from compliance and battery 
issues, whereas infrastructure-based options such as LiDAR 
and radar are expensive and difficult to scale. Camera-based 
deep learning approaches improve activity recognition, but 
often lack semantic reasoning. SafeSight addresses these 
gaps by combining camera infrastructure with VLM-driven 
scene understanding, LLM-based rule enforcement, and deep 
learning techniques. This integrated design enables accurate, 
privacy-preserving monitoring of vulnerable populations, 
distinguishing SafeSight as a novel and practical real-time 
solution.

�   Methods
Architecture:
The SafeSight system architecture, as seen in Figure 1, is 

designed to provide comprehensive, real-time monitoring in 
places like homes, childcare centers, assisted living facilities, 
etc. This system is centered around the cameras that are strate-
gically placed around the monitoring facility and connected to 
a pre-processor module. The classifier consists of six modules:

Image Pre-processing module: This module performs frame 
extraction, color space conversion, and resizing. This step re-
moves any unwanted noise or background artifacts, ensuring 
consistent, high-quality input into the system’s other modules.

Scene Context Identif ier: This module can differentiate cer-
tain contextual details, such as the room type, the objects that 
are present, and allowed or safe actions. It utilizes the LLAVA 
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Figure 1: SafeSight system architecture. The system takes the video footage 
from the real world, extracts the images, and takes them through a series of 
steps to clean up the images, extract key regions of human interactions, and 
identify the performed actions of individuals within those regions. After 
classifying the actions, an informative alert will be triggered along with 
privacy-protected alert images.
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Moondream2 VLM combined with a large language model 
(LLM) to describe the scene in detail.23,24 Once the con-
text of the scene is established, YOLO-World identifies and 
localizes key objects within the frame. This process generates 
bounding boxes for recognized objects.

Key Region Identif ier: This module segments these into key 
interaction regions that focus on interactions between individ-
uals and nearby objects or other people. This allows the system 
to monitor specific scenarios, such as a person cooking with a 
stove in a kitchen or brushing their teeth in a bathroom.

Action Recognizer: This module uses a Vision Language 
Module to identify the actions being performed by the indi-
viduals within these key regions.

Contextual Severity Classif ier: This module classifies these 
actions into non-sedentary or sedentary categories. Sedentary 
actions are further scrutinized by the Sedentary Action Mon-
itor to detect joint movements and assess the mobility of the 
individual. If minimal to no movement is observed within a 
predefined time frame, an alert is sent out to emergency con-
tacts and services.

Contextual Privacy Engine: This module blurs sensitive re-
gions while preserving the overall shape of the individual’s 
figure. It ensures that alerts are informative while preserving 
the privacy of the monitored individual, especially in sensitive 
areas such as bathrooms or bedrooms.

Sedentary Action Monitor:
The SafeSight system follows a classification technique that 

can effectively categorize human activity in varying scenarios. 
The large language model (OpenAI GPT-4o) is utilized of-
fline to categorize valid sedentary and non-sedentary actions 
in different scene contexts (Table 1). Sedentary actions involve 
limited movement and are mostly related to rest, such as sitting, 
lying down, or reclining. Conversely, non-sedentary actions 
involve dynamic movements and are done with significantly 
more physical exertion, such as walking, standing, cooking, or 
cleaning. By distinguishing between these action classes, the 
SafeSight platform can respond to immobility or contextually 
unusual behavior that may indicate a health emergency.

The ability to accurately classify actions into sedentary and 
non-sedentary categories improves the real-time monitoring 
capabilities of the system. For instance, sedentary actions may 
require closer observation in order to detect immobilization 
and health concerns, such as a fall or stroke. On the contrary, 
non-sedentary actions can show that the individual is active-
ly engaged in their current tasks. This framework supports 
the SafeSight system's situational awareness and its goal of 
protecting vulnerable populations. Table 1 exemplifies com-
mon household activities that fit within both action classes, 
demonstrating the applications of SafeSight in real-world en-
vironments.

The architecture of the Sedentary Action Monitor is shown 
in Figure 2, portraying the process for analyzing and re-
sponding to sedentary behaviors. The first step involves the 
Contextual Severity Classifier, which evaluates actions detect-
ed by the Action Recognizer. As outlined in Table 1, it will 
then categorize the actions into sedentary or non-sedentary 
classes based on factors such as the objects interacted with, 
the subject's location, scene description, and user preferenc-
es. The classifier follows specific rules, basing its operations 
on expert knowledge, user settings, and LLM-generated rules 
that define valid actions for specific contexts, locations, and 
situations. Depending on the user’s privacy settings, Safe-
Sight will log non-sedentary actions for documentation, but 
will continue monitoring sedentary actions for any anomalies. 
This approach ensures that the actions are properly classified 
and that appropriate steps can be taken. Customizable user 
preferences enable users to specify mask settings, data access, 
and alert recipient permissions, ensuring only authorized care-
givers receive notifications. While adults and other elderly 
individuals can provide their consent, the usage of SafeSight 
for children may require consent from parents or guardians. 
This approach upholds the user’s autonomy and minimizes 
surveillance concerns, aligning with ethical standards for pri-
vacy-preserving AI monitoring.

When sedentary activity has been detected, the Key-point 
Extractor extracts body key points and stores them in a 
key-value database along with the corresponding timestamp, 
image, and action metadata. The Motion Anomaly Detector 
is continuously fed these key points, allowing it to compare 
the current key point set with previous ones using a Euclid-
ean distance calculation. If the cumulative motion distance 
D, which is calculated across a time window T, reaches below 

Figure 2: Architecture of the Sedentary Action Monitor, highlighting 
contextual severity classification of detected actions, pose key-point extraction 
for monitoring sedentary behaviors, and motion anomaly detection via 
Euclidean distance calculations. This multi-stage process ensures timely 
intervention during anomalous events while minimizing false alarms.

Table 1: Defines the classification of sedentary and non-sedentary actions 
across general movement, household activities, and leisure tasks. Sedentary 
actions encompass low-movement activities like sitting and reclining, while 
non-sedentary actions involve dynamic tasks such as walking, standing, 
or cleaning. Accurate distinction aids SafeSight in the timely detection of 
immobility or unusual behavior.

ijhighschoolresearch.org



	 101	

privacy while retaining contextual awareness and attention to 
detail.

Implementation:
The SafeSight system was implemented using Python 3.11, 

leveraging its extensive ecosystem for computer vision and 
AI-based tasks. Real-time video input is captured using a Mi-
crosoft Lifecam HD-3000 webcam. Frames are extracted at 
a configurable frame rate using OpenCV’s video capture and 
decoding utilities, and subsequently pre-processed (e.g., format 
conversion, resizing, noise reduction) for analysis.

Scene context is established using the Moondream 2 
VQA model, which processes each frame with scene-specif-
ic prompts to classify the environment as kitchen, bathroom, 
living room, etc. To streamline object detection, an offline pro-
cess using OpenAI’s GPT-4o generates scene-specific object 
lists, which are cached and indexed for fast access. These lists 
serve as constraints for the Open Vocabulary Object Detector, 
implemented using the YOLO-World model,25 ensuring that 
only context-relevant objects are detected in each scene.

For activity analysis, the same Moondream 2 model is used 
to infer the action being performed by the subject in the frame. 
If a sedentary action is detected, the Key-Point Extractor 
Module uses the YOLO11x-pose model to estimate human 
pose keypoints. These key points are used to compute motion 
trends over time for anomaly detection.

To preserve privacy in sensitive contexts, SafeSight incorpo-
rates a privacy masking module. First, the subject is localized 
using the YOLO11x detector. Then, YOLO11x-pose refines 
this region to produce a segmented body contour.26 OpenCV 
functions, such as cv2.fillPoly and cv2.addWeighted, are used 
to generate and blend a privacy mask onto the frame. The re-
sulting privacy-protected image is used in any alerts, ensuring 
that context is preserved while respecting the subject’s privacy 
preferences. This modular implementation allows SafeSight to 
balance accuracy, responsiveness, and privacy protection in re-
al-world monitoring scenarios.

System Setup:
The SafeSight system was implemented using an Intel i9-

based NUC platform that can support real-time monitoring 
and the processing requirements of the application. The system 
features an Intel Core i9-9980 HK processor with 8 cores, 16 
threads, and a base clock speed of 3.4 GHz, with 64 GB DDR4 
RAM. For graphical processing, it incorporates an NVIDIA® 

a threshold (τ), the system sends an alert, signaling that the 
subject is motionless and may be in need of intervention. Safe-
Sight’s multi-stage architecture ensures accurate monitoring 
of sedentary behavior, enabling timely detection of potential 
emergencies while minimizing false alarms. The algorithm 
incorporated in the Motion Anomaly Detector is as follows:

𝑃𝑡 = [𝑝1,𝑝2,...𝑝n] (key points for current time)
𝑃𝑡−𝑘 = [𝑝′1,𝑝′2,...𝑝′n] (key points for past time)

Euclidean distance = 𝑑𝑘

Cumulative distance (over time window, T) = D

Threshold for motion anomaly = 𝝉
If D < 𝝉, motion anomaly detected, an alert is triggered.

Contextual Privacy Engine:
The architecture of the Contextual Privacy Engine, illus-

trated in Figure 3, plays a role in ensuring privacy during 
sedentary action monitoring. The initial step involves the Pri-
vacy Filter block, which assesses whether privacy masking is 
necessary based on the scene context, user preferences, and the 
current action. If the Privacy Filter decides that privacy mask-
ing is not required, the alert is dispatched directly, but if it is 
necessary, the system proceeds to the masking sequence.

The Person Detector localizes the individual precisely in 
the relevant image region and generates bounding box coor-
dinates. The Instance Segmentation module then uses these 
coordinates to segment the person within this bounding box 
and produce a contour for targeted masking. Using the con-
tours, the Object Mask Creator generates a visual privacy 
mask tailored to the individual, which is then combined with 
the original image, ensuring both visual integrity and privacy 
enforcement. Figure 4 shows the original image, followed by 
the privacy mask and the contextual mask according to the 
figure’s surroundings (bathroom). This process results in a 
privacy-protected image that will protect user privacy within 
any alerts shared to necessary contacts. Unlike IR or thermal 
cameras, which struggle with visual accuracy in low-contrast 
environments, SafeSight’s contour-based masking preserves 

DOI: 10.36838/v8i1.98

Figure 3: Architecture of the Contextual Privacy Engine, illustrating privacy 
decision-making based on context, user preferences, precise localization and 
segmentation of individuals, and application of tailored visual privacy masks. 
This ensures alerts maintain privacy standards during anomalous events.

Figure 4: Sample output of the Contextual Privacy Engine demonstrating 
localization and segmentation of an individual who is under distress in 
a bathroom, followed by the creation and application of a tailored visual 
privacy mask. Original image of immobilized person (left), contour mask of 
immobilized person (middle), privacy-preserving contour mask overlaid on 
original image (right).
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mance (both >0.9), while Office Space and Study Area lag, 
likely due to visual ambiguity and overlapping furniture or 
layout. This indicates that the model performs best in visually 
distinctive domestic environments.

Action Recognizer:
Table 2 and Table 3 present detailed evaluation metrics for 

both sedentary and non-sedentary actions across live video 
scenes and benchmark datasets (UCF50, GMDCSA). The 
model achieved F1 scores of 0.867 for both action types in the 
various private spaces, indicating strong generalization in per-
sonal care contexts. Non-sedentary detection is more variable 
depending on the scenes, as the precision drops to 0.629, sug-
gesting that similar body positions may confuse activity types 
in tight spaces.

The following bar plot in Figure 6 illustrates the average 
Euclidean distance between pose vectors representing a sub-
ject's posture across various actions, varying between static and 
dynamic states. The y-axis, "Average distance between two 
pose vectors," quantifies the degree of change from the indi-
vidual’s movement. Higher bars indicate a greater difference 
between the static and dynamic poses for a specific action, sug-
gesting that there is significant movement or shifting. On the 
contrary, lower bars reflect actions with minimal pose variation 
when compared to a static pose. The x-axis labels each action, 
allowing for better comparisons and analysis of how different 
actions impact pose variation.

GeForce® RTX 3060 GPU with 12 GB of memory. The plat-
form operates on Ubuntu 22.04 LTS and is tested using an 
external Microsoft Lifecam HD-3000 webcam.

Datasets:
To evaluate SafeSight’s accuracy in action recognition and 

fall detection, benchmark datasets and custom recordings were 
used:

UCF50 is a widely adopted human action recognition data-
set containing 6,618 video clips across 50 action categories,27 
sourced from real-world YouTube videos. These include every-
day and high-movement activities such as running, basketball 
shooting, and handstand walking, providing valuable diversity 
for model training and generalization.

GMDCSA (General Multiview Dataset for Context-Aware 
Fall Detection) contains 1,752 annotated videos across 24 ac-
tion classes,28 of which focus on fall events and common daily 
actions in varied environments. With a dataset size of approx-
imately 15 GB, it provides scenarios for validating the system’s 
fall detection capabilities.

In addition to these datasets, SafeSight was evaluated using 
a set of recorded and live scenarios involving subjects perform-
ing both sedentary and non-sedentary actions. These real-time 
tests ensured that the system could operate effectively under 
practical deployment conditions, validating performance in 
privacy-sensitive environments and varying lighting or back-
ground conditions.

�   Result and Discussion 
The SafeSight system was evaluated across multiple dimen-

sions to assess its accuracy, responsiveness, and suitability for 
real-time monitoring of vulnerable populations. Results are 
presented across key modules, including scene context clas-
sification, action recognition, motion sensitivity, and system 
performance.

Scene Context Identif ication:

Scene context understanding accuracy varies across different 
environments. Figure 5 shows the accuracy for each context, 
with Dining Room and Kitchen yielding the highest perfor-
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Figure 5: Scene context identification accuracy across various domestic 
environments, illustrating the highest accuracy in kitchens, dining rooms, 
and bathrooms. Performance slightly declines in office spaces and study areas, 
highlighting potential areas for model refinement. Overall, accuracy remains 
consistently high, supporting effective contextual classification in monitoring 
applications.

Table 2: Performance metrics (accuracy, precision, recall, F1 score) for 
detecting sedentary and non-sedentary actions using live video datasets 
from various household scenes. Results show consistently high accuracy and 
precision in certain occupational areas, whereas some areas, like bathrooms, 
present challenges, highlighting opportunities for improvement in specific 
environments.

Table 3: Evaluation of sedentary and non-sedentary action detection 
performance using GMDSCA and UCF50 datasets, respectively. Results 
demonstrate good accuracy, precision, recall, and F1 scores across both 
datasets, with slightly higher overall performance for non-sedentary actions.
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Motion Detection Sensitivity:
It measures the ability to detect movements accurately. It is 

calculated by computing the Euclidean distance between two 
pose vectors from the same time series but at different obser-
vation times. One of the sampling times is the current time, 
and the other sampling time is T seconds in the past (T is kept 
at 60 seconds and can be varied depending upon the scenario). 
The following Figure 7 shows how much the pose has changed 
over the sampling interval.

System Performance Metrics:
Latency, measured in seconds, refers to the time taken from 

the action to the alert. Depending on the scenario, the latency 
varies significantly. When an action happens within the con-
text of the scene, such as cooking food on the kitchen stove, the 
system needs to compare Euclidean distances for a minimum 
of around thirty seconds before confirming that there is limited 
movement from the monitored individual. On the contrary, in 
cases where the actions are out of context, the action would 

be immediately flagged, triggering an alert within a few sec-
onds. The latencies for these scenarios are directly compared in 
Table 4. In-context actions take longer to trigger alerts in the 
SafeSight system because they require extended monitoring to 
confirm anomalies, such as prolonged immobility, over a time 
window (32–180 seconds). Out-of-context actions, being in-
herently anomalous, trigger immediate alerts within 2 seconds.

Throughput is the number of frames or actions processed 
per second, which varies depending on how many models 
have to be run on the frame. Based on the particular scenario, 
throughput varies from 0.5 frames per second to 2 frames per 
second in the system. Additionally, the system's alert accuracy 
is dependent on the actions being tracked, differing between 
sedentary and non-sedentary actions as pictured in Table 5.

Applications:
SafeSight has potential for broad applications beyond 

home-based monitoring for elderly individuals and children. 
In healthcare settings, it can assist in continuous patient mon-
itoring, enabling early detection of fall events and tracking 
rehabilitation progress. In educational environments, Safe-
Sight can enhance safety in classrooms and playgrounds, 
particularly for young or special-needs children. In industrial 
contexts, such as construction zones or chemical facilities, the 
system can detect hazardous activity patterns or accidents in 
real time. Additionally, SafeSight can be a powerful system 
in law enforcement and correctional institutions by providing 
monitoring to identify disturbances or violent events. Its pri-
vacy-preserving mechanisms make it suitable for public spaces, 
balancing the need for security with ethical surveillance.

Future Implementations:
Future versions of SafeSight can incorporate multi-modal 

sensing through depth cameras, LiDAR, and environmen-
tal sensors (e.g., temperature, gas, sound) to increase context 
awareness. Integrating these data streams with more advanced 
machine learning models can allow the system to work auton-
omously in complex scenarios, such as interactions between 
multiple people or within larger crowds. SafeSight could also 
be scaled to smart city infrastructures, where it would aid in 
public safety, disaster response, and population-level behav-
ior monitoring in real-time. This evolution would support 
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Figure 6: Average Euclidean distances between pose vectors across various 
domestic actions, indicating levels of movement from static to dynamic states. 
Higher distances, such as those in "Watching TV" and "Playing Instruments," 
reflect greater motion variability, whereas actions like "Sitting" and "Lying 
down" show minimal pose variations, illustrating lower movement intensity. 
This analysis aids in accurately identifying motion anomalies during sedentary 
behavior monitoring.

Figure 7: Motion detection sensitivity measured through Euclidean distance 
between current and past (60 seconds earlier) pose vectors over time. Distinct 
action patterns highlight varying motion intensities, with significant pose 
changes during actions like "Playing Instruments" and minimal movement 
during "Lying down," underscoring system accuracy in detecting and 
distinguishing subtle movements.

Table 4: Latency measurements (in seconds) comparing system alert 
responses for out-of-context versus in-context actions. Immediate alerts (2 
seconds) occur for anomalous, out-of-context actions, whereas contextually 
appropriate actions require extended monitoring (32–180 seconds) before 
triggering alerts.

Table 5: System alert accuracy comparing sedentary versus non-sedentary 
actions. Non-sedentary actions achieve a higher accuracy (95%) compared to 
sedentary actions (87%), reflecting better reliability in dynamic scenarios.
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deployment in transportation hubs, senior living communi-
ties, or post-disaster relief zones. Scaling SafeSight for smart 
cities and healthcare settings faces challenges, including high 
computational demands and network bandwidth constraints. 
Optimized algorithms and application-specific hardware will 
ensure efficient, large-scale deployment while preserving per-
formance and privacy standards.

Despite visual masking, video monitoring may raise privacy 
concerns for users, especially in private settings. SafeSight will 
address these concerns by enhancing user control with custom-
izable monitoring schedules and consent protocols. Although 
SafeSight’s accuracy decreases in environments with visual am-
biguity, future improvements will enhance scene differentiation 
and refine non-sedentary action classification in constrained 
spaces.

�   Conclusion 
The SafeSight project presents a real-time, privacy-pre-

serving monitoring system designed to safeguard vulnerable 
populations through intelligent scene understanding and be-
havioral analysis. By combining camera-based infrastructure 
with deep learning and vision-language models, SafeSight 
distinguishes between sedentary and non-sedentary ac-
tions, enabling rapid detection of potential emergencies with 
individual privacy protections. The architecture integrates con-
text-aware modules for scene classification, object detection, 
motion analysis, and selective privacy masking. It effectively 
addresses key challenges in conventional systems that rely on 
wearable sensors. Experimental results show good performance, 
with F1 scores above 0.86 for sedentary action detection in 
live scenarios and high accuracy in context classification across 
common household settings. While current results validate the 
system’s reliability, future development will focus on improving 
computational efficiency, enabling deployment at a larger scale, 
and incorporating multi-modal sensing for enhanced scene 
understanding.
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