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ABSTRACT: Real-time monitoring systems are being increasingly utilized as an option to protect vulnerable populations,
but current solutions heavily depend on sensors that reduce effectiveness and create privacy concerns. The proposed SafeSight
system addresses this gap by applying an array of models to perform scene understanding, object detection, action recognition,
and motion anomaly detection to enable contextual privacy masking. We evaluated SafeSight with benchmark datasets (UCF50,
GMDCSA) and live video feeds. It achieves up to 0.867 F1 score for sedentary activity recognition and over 90% scene context
accuracy within household environments. The use of artificial intelligence through deep learning and vision language models
revolutionizes live video analysis to make accurate decisions with temporal scene analysis, static and dynamic events, and privacy-
protecting contoured filters for sensitive locations. SafeSight could feasibly expedite alerts while monitoring high-risk situations
where medical attention is required immediately, eventually being scaled to larger scenarios for healthcare, education, and public
safety.

KEYWORDS: Robotics and Intelligent Machines, Machine Learning, Health Monitoring, Vision Language Model,
Ultralytics.

B Introduction that these systems often over-trigger alerts for non-emergency

Real-time video analysis systems are becoming an increas- events or fail to raise on-time alerts for genuine emergencies.
ingly valuable tool for monitoring the safety and well-being of Existing systems often use a mix of wearable and infrastruc-
vulnerable populations, including senior citizens, unattended ture-based sensors.’ Wearables such as accelerometers and
children, and individuals with health conditions. For elderly heart rate monitors can provide continuous physiological
individuals living alone at home or in assisted care facilities, data,* but their reliability is limited by battery constraints, in-
these systems are critical for detecting potentially fatal inci- consistent use, environmental sensitivity, and user discomfort
dents and alerting the caregivers.! Similarly, young children at or forgetfulness.”® Infrastructure-based systems often require a
home or in childcare settings benefit from continuous super- high computational load, delaying detection and reducing the
vision to prevent and respond to accidents and emergencies. overall effectiveness of interventions.
Beyond individual care, real-time monitoring has applications To overcome these challenges and address user needs, re-
in law enforcement and institutional settings, such as detecting al-time alerting systems must maintain a balance between
disturbances in prisons or ensuring safety in public areas. These responsiveness and user privacy. Monitoring should not result
systems offer situational awareness, enabling caregivers, fami- in a sense of constant surveillance, and alerts should only be
ly members, or authorized personnel to remotely track current triggered when necessary, as long as any privacy measures are
activity within the monitored property. taken.

Timely intervention during medical emergencies, such as Infrastructure-based sensors, such as cameras, depth sensors,
falls, seizures, or strokes, can significantly improve survival and radar, and LiDAR, offer more consistent and non-intrusive
recovery outcomes.? In the United States alone, over 14 mil- monitoring by capturing visual and spatial data without requir-
lion people, primarily seniors over 65, experience falls annually. ing the subject to wear any devices. In the SafeSight project, we
Similarly, strokes impact approximately 795,000 individuals adopt camera-based infrastructure sensors to obtain detailed
each year, and rapid intervention within the first hour is criti- visual input and contextual awareness across monitored spac-
cal to reducing complications. Seizures lasting longer than five es. Computer vision techniques, including object detection,
minutes also require immediate medical attention. Effective tracking, pose estimation, and activity recognition, form the
monitoring systems must be capable of detecting both static foundation for analyzing real-time video streams. By leverag-
events, such as lying down or sitting, and dynamic events, such ing deep learning frameworks such as TensorFlow,” PyTorch,®
as walking or suddenly collapsing, to enable rapid response. YOLO,’ and OpenCV," SafeSight builds an accurate and

There are various challenges associated with real-time scalable monitoring system.
monitoring systems. They raise serious concerns about pre- To further enhance performance and contextual understand-
serving the user’s privacy, especially in sensitive locations of ing, SafeSight incorporates Vision-Language Models (VLMs)
the property, like bedrooms or bathrooms, where supervision using tools such as Olama. Unlike traditional deep learning
of vulnerable populations is still required. Another challenge is models, VLLMs are capable of reasoning across both visual and
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textual data. They can generalize to a broad range of objects
and actions beyond those seen during training and perform
complex tasks like visual question answering and scene in-
terpretation. This integration enables SafeSight to deliver a
context-aware, privacy-conscious, and responsive solution for
real-time safety monitoring. To achieve this, we incorporate
several key contributions:

Scene-aware privacy-preserving real-time alert generation: We
developed algorithms to identify and alert on unusual events
while minimizing the exposure of sensitive information.

LLM-driven rules engine: We utilized large language models
to define and enforce rules about valid and invalid behaviors
within a given scene.

Real-time assessment of mobility state: We developed tech-
niques to assess an individual's mobility state independently of
their current posture, enabling the detection of subtle changes
in activity levels.

Related Works:

Within previous studies regarding real-time monitoring
systems for vulnerable populations, wearable sensors have been
researched for their ability to detect falls and monitor vitals.
For instance, fall detection systems that use accelerometers
exhibited high accuracy in controlled environments. How-
ever, in real-world scenarios, there are other factors, such as
user mobility and battery life, that could limit success. Ad-
ditionally, wearable devices such as heart rate monitors and
smartwatches can provide continuous health data, but become
less dependable due to the user’s forgetfulness and improper
placement.”? Although there are significant advancements in
wearable technology, the continued limitations stress the need
for solutions that rely on infrastructure-based monitoring in-
stead of wearable sensors. Systems combining wearable sensors
with environmental context have shown improved accuracy
and reliability in detecting anomalies.’

Low-resolution infrared arrays with 3D convolutional neu-
ral networks achieve accurate privacy-preserving fall detection,
but struggle in cluttered environments." Optical elements may
reduce identifiable data yet compromise contextual details.*
Privacy-preserving cameras and neuromorphic sensors limit
visual information, but face challenges in dynamic scenes.”™

Although depth sensors, radar sensors, or LiDAR sensors
can be used to create detailed 3D maps of environments,
these technologies are typically expensive and complex to im-
plement on a larger scale.”” By using camera-based systems
and computer vision techniques, many of these limitations
can be reduced or eliminated. Frameworks for deep learning,
such as TensorFlow, MediaPipe,' and YOLO, enable appli-
cations related to human activity recognition and anomalous
event detection. When these techniques are used together
with depth data, they create strong detection systems in ob-
structed environments.” Vision-language models (VLMs)
have recently been used for real-time understanding using
camera-based systems. The coordination between visual and
textual data allows for a more sophisticated understanding and
reasoning of the conditions being monitored.** The advantage
of these models is that they use joint representations of images

and texts, allowing for increased detection of anomalies and
behavior analysis. Empirical works assert that VL.Ms indeed
enhance performance in important tasks like visual question
answering and scene interpretation, both of which are crucial
for real-time monitoring.*!

In addition to detection accuracy, privacy preservation is a
critical focus in the field. Some existing methods include edge
processing and encrypted data transmission, which can pro-
tect user privacy while effectively running the system.?? The
SafeSight project uses VLMs, deep learning methods, and
appropriate privacy-preserving methods to integrate a reliable
monitoring system that effectively addresses the drawbacks of
existing solutions.

Existing monitoring approaches face trade-offs between
accuracy, cost, and privacy. While wearable sensors capture
physiological data, they suffer from compliance and battery
issues, whereas infrastructure-based options such as LiDAR
and radar are expensive and difficult to scale. Camera-based
deep learning approaches improve activity recognition, but
often lack semantic reasoning. SafeSight addresses these
gaps by combining camera infrastructure with VLM-driven
scene understanding, LLM-based rule enforcement, and deep
learning techniques. This integrated design enables accurate,
privacy-preserving monitoring of vulnerable populations,
distinguishing SafeSight as a novel and practical real-time
solution.

B Methods

Architecture:

The SafeSight system architecture, as seen in Figure 1, is
designed to provide comprehensive, real-time monitoring in
places like homes, childcare centers, assisted living facilities,
etc. This system is centered around the cameras that are strate-
gically placed around the monitoring facility and connected to
a pre-processor module. The classifier consists of six modules:
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Figure 1: SafeSight system architecture. The system takes the video footage
from the real world, extracts the images, and takes them through a series of
steps to clean up the images, extract key regions of human interactions, and
identify the performed actions of individuals within those regions. After
classifying the actions, an informative alert will be triggered along with
privacy-protected alert images.

Image Pre-processing module: This module performs frame
extraction, color space conversion, and resizing. This step re-
moves any unwanted noise or background artifacts, ensuring
consistent, high-quality input into the system’s other modules.

Scene Context Identifier: This module can differentiate cer-
tain contextual details, such as the room type, the objects that
are present, and allowed or safe actions. It utilizes the LLAVA
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Moondream2 VLM combined with a large language model
(LLM) to describe the scene in detail.23,24 Once the con-
text of the scene is established, YOLO-World identifies and
localizes key objects within the frame. This process generates
bounding boxes for recognized objects.

Key Region Identifier: This module segments these into key
interaction regions that focus on interactions between individ-
uals and nearby objects or other people. This allows the system
to monitor specific scenarios, such as a person cooking with a
stove in a kitchen or brushing their teeth in a bathroom.

Action Recognizer: This module uses a Vision Language
Module to identify the actions being performed by the indi-
viduals within these key regions.

Contextual Severity Classifier: This module classifies these
actions into non-sedentary or sedentary categories. Sedentary
actions are further scrutinized by the Sedentary Action Mon-
itor to detect joint movements and assess the mobility of the
individual. If minimal to no movement is observed within a
predefined time frame, an alert is sent out to emergency con-
tacts and services.

Contextual Privacy Engine: This module blurs sensitive re-
gions while preserving the overall shape of the individual’s
figure. It ensures that alerts are informative while preserving
the privacy of the monitored individual, especially in sensitive
areas such as bathrooms or bedrooms.

Sedentary Action Monitor:

The SafeSight system follows a classification technique that
can effectively categorize human activity in varying scenarios.
The large language model (OpenAl GPT-4o) is utilized of-
fline to categorize valid sedentary and non-sedentary actions
in different scene contexts (Table 1). Sedentary actions involve
limited movement and are mostly related to rest, such as sitting,
lying down, or reclining. Conversely, non-sedentary actions
involve dynamic movements and are done with significantly
more physical exertion, such as walking, standing, cooking, or
cleaning. By distinguishing between these action classes, the
SafeSight platform can respond to immobility or contextually
unusual behavior that may indicate a health emergency.

Table 1: Defines the classification of sedentary and non-sedentary actions
across general movement, household activities, and leisure tasks. Sedentary
actions encompass low-movement activities like sitting and reclining, while
non-sedentary actions involve dynamic tasks such as walking, standing,
or cleaning. Accurate distinction aids SafeSight in the timely detection of
immobility or unusual behavior.

Activity types Sedentary actions Non-sedentary actions
General movement  Sitting Walking, running
Lying down Standing up
Reclining on couch Stretching

Household activity Watching TV Cooking, cleaning, sweeping, dusting
Reading Folding, washing, loading clothes
Leisure Drawing, painting Playing ball
Playing light instruments ~ Gardening

The ability to accurately classify actions into sedentary and
non-sedentary categories improves the real-time monitoring
capabilities of the system. For instance, sedentary actions may
require closer observation in order to detect immobilization
and health concerns, such as a fall or stroke. On the contrary,
non-sedentary actions can show that the individual is active-
ly engaged in their current tasks. This framework supports
the SafeSight system's situational awareness and its goal of
protecting vulnerable populations. Table 1 exemplifies com-
mon household activities that fit within both action classes,
demonstrating the applications of SafeSight in real-world en-
vironments.
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Figure 2: Architecture of the Sedentary Action Monitor, highlighting
contextual severity classification of detected actions, pose key-point extraction
for monitoring sedentary behaviors, and motion anomaly detection via
Euclidean distance calculations. This multi-stage process ensures timely
intervention during anomalous events while minimizing false alarms.

The architecture of the Sedentary Action Monitor is shown
in Figure 2, portraying the process for analyzing and re-
sponding to sedentary behaviors. The first step involves the
Contextual Severity Classifier, which evaluates actions detect-
ed by the Action Recognizer. As outlined in Table 1, it will
then categorize the actions into sedentary or non-sedentary
classes based on factors such as the objects interacted with,
the subject's location, scene description, and user preferenc-
es. The classifier follows specific rules, basing its operations
on expert knowledge, user settings, and LLM-generated rules
that define valid actions for specific contexts, locations, and
situations. Depending on the user’s privacy settings, Safe-
Sight will log non-sedentary actions for documentation, but
will continue monitoring sedentary actions for any anomalies.
This approach ensures that the actions are properly classified
and that appropriate steps can be taken. Customizable user
preferences enable users to specify mask settings, data access,
and alert recipient permissions, ensuring only authorized care-
givers receive notifications. While adults and other elderly
individuals can provide their consent, the usage of SafeSight
for children may require consent from parents or guardians.
This approach upholds the user’s autonomy and minimizes
surveillance concerns, aligning with ethical standards for pri-
vacy-preserving Al monitoring.

When sedentary activity has been detected, the Key-point
Extractor extracts body key points and stores them in a
key-value database along with the corresponding timestamp,
image, and action metadata. The Motion Anomaly Detector
is continuously fed these key points, allowing it to compare
the current key point set with previous ones using a Euclid-
ean distance calculation. If the cumulative motion distance
D, which is calculated across a time window T, reaches below

100
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a threshold (), the system sends an alert, signaling that the
subject is motionless and may be in need of intervention. Safe-
Sight’s multi-stage architecture ensures accurate monitoring
of sedentary behavior, enabling timely detection of potential
emergencies while minimizing false alarms. The algorithm
incorporated in the Motion Anomaly Detector is as follows:

P, = [py.ps....p,] (key points for current time)
P—k =[p'1.p'p....p" ] (key points for past time)

Euclidean distance = d,,

Threshold for motion anomaly = 7
If D < 7, motion anomaly detected, an alert is triggered.

Contextual Privacy Engine:

The architecture of the Contextual Privacy Engine, illus-
trated in Figure 3, plays a role in ensuring privacy during
sedentary action monitoring. The initial step involves the Pri-
vacy Filter block, which assesses whether privacy masking is
necessary based on the scene context, user preferences, and the
current action. If the Privacy Filter decides that privacy mask-
ing is not required, the alert is dispatched directly, but if it is
necessary, the system proceeds to the masking sequence.
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Figure 3: Architecture of the Contextual Privacy Engine, illustrating privacy
decision-making based on context, user preferences, precise localization and
segmentation of individuals, and application of tailored visual privacy masks.
This ensures alerts maintain privacy standards during anomalous events.

The Person Detector localizes the individual precisely in
the relevant image region and generates bounding box coor-
dinates. The Instance Segmentation module then uses these
coordinates to segment the person within this bounding box
and produce a contour for targeted masking. Using the con-
tours, the Object Mask Creator generates a visual privacy
mask tailored to the individual, which is then combined with
the original image, ensuring both visual integrity and privacy
enforcement. Figure 4 shows the original image, followed by
the privacy mask and the contextual mask according to the
figure’s surroundings (bathroom). This process results in a
privacy-protected image that will protect user privacy within
any alerts shared to necessary contacts. Unlike IR or thermal
cameras, which struggle with visual accuracy in low-contrast
environments, SafeSight’s contour-based masking preserves

privacy while retaining contextual awareness and attention to
detail.

Figure 4: Sample output of the Contextual Privacy Engine demonstrating
localization and segmentation of an individual who is under distress in
a bathroom, followed by the creation and application of a tailored visual
privacy mask. Original image of immobilized person (left), contour mask of
immobilized person (middle), privacy-preserving contour mask overlaid on

original image (right).

Implementation:

The SafeSight system was implemented using Python 3.11,
leveraging its extensive ecosystem for computer vision and
Al-based tasks. Real-time video input is captured using a Mi-
crosoft Lifecam HD-3000 webcam. Frames are extracted at
a configurable frame rate using OpenCV’s video capture and
decoding utilities, and subsequently pre-processed (e.g., format
conversion, resizing, noise reduction) for analysis.

Scene context is established using the Moondream 2
VQA model, which processes each frame with scene-specif-
ic prompts to classify the environment as kitchen, bathroom,
living room, etc. To streamline object detection, an offline pro-
cess using OpenAl's GPT-40 generates scene-specific object
lists, which are cached and indexed for fast access. These lists
serve as constraints for the Open Vocabulary Object Detector,
implemented using the YOLO-World model,* ensuring that
only context-relevant objects are detected in each scene.

For activity analysis, the same Moondream 2 model is used
to infer the action being performed by the subject in the frame.
If a sedentary action is detected, the Key-Point Extractor
Module uses the YOLO11x-pose model to estimate human
pose keypoints. These key points are used to compute motion
trends over time for anomaly detection.

To preserve privacy in sensitive contexts, SafeSight incorpo-
rates a privacy masking module. First, the subject is localized
using the YOLO11x detector. Then, YOLO11x-pose refines
this region to produce a segmented body contour.?* OpenCV
functions, such as cv2.fillPoly and cv2.addWeighted, are used
to generate and blend a privacy mask onto the frame. The re-
sulting privacy-protected image is used in any alerts, ensuring
that context is preserved while respecting the subject’s privacy
preferences. This modular implementation allows SafeSight to
balance accuracy, responsiveness, and privacy protection in re-
al-world monitoring scenarios.

System Setup:

The SafeSight system was implemented using an Intel i9-
based NUC platform that can support real-time monitoring
and the processing requirements of the application. The system
features an Intel Core 19-9980 HK processor with 8 cores, 16
threads, and a base clock speed of 3.4 GHz, with 64 GB DDR4
RAM. For graphical processing, it incorporates an NVIDIA®

DOI: 10.36838/v8i1.98

101



ijhighschoolresearch.org

GeForce® RTX 3060 GPU with 12 GB of memory. The plat-
form operates on Ubuntu 22.04 LTS and is tested using an
external Microsoft Lifecam HD-3000 webcam.

Datasets:

To evaluate SafeSight’s accuracy in action recognition and
fall detection, benchmark datasets and custom recordings were
used:

UCF50 is a widely adopted human action recognition data-
set containing 6,618 video clips across 50 action categories,?’
sourced from real-world YouTube videos. These include every-
day and high-movement activities such as running, basketball
shooting, and handstand walking, providing valuable diversity
for model training and generalization.

GMDCSA (General Multiview Dataset for Context-Aware
Fall Detection) contains 1,752 annotated videos across 24 ac-
tion classes,” of which focus on fall events and common daily
actions in varied environments. With a dataset size of approx-
imately 15 GB, it provides scenarios for validating the system’s
fall detection capabilities.

In addition to these datasets, SafeSight was evaluated using
a set of recorded and live scenarios involving subjects perform-
ing both sedentary and non-sedentary actions. These real-time
tests ensured that the system could operate effectively under
practical deployment conditions, validating performance in
privacy-sensitive environments and varying lighting or back-
ground conditions.

B Result and Discussion

The SafeSight system was evaluated across multiple dimen-
sions to assess its accuracy, responsiveness, and suitability for
real-time monitoring of vulnerable populations. Results are
presented across key modules, including scene context clas-
sification, action recognition, motion sensitivity, and system
performance.

Scene Context Identification:

Scene context understanding accuracy for different scenes

Kitchen
Dining Room
Bedoom
Bathroom

Scene

Living Room
Office Space
Study area

0.00 0.25 0.50 0.75

Scene context understanding accuracy

Figure 5: Scene context identification accuracy across various domestic
environments, illustrating the highest accuracy in kitchens, dining rooms,
and bathrooms. Performance slightly declines in office spaces and study areas,
highlighting potential areas for model refinement. Overall, accuracy remains
consistently high, supporting effective contextual classification in monitoring
applications.

Scene context understanding accuracy varies across different
environments. Figure 5 shows the accuracy for each context,
with Dining Room and Kitchen yielding the highest perfor-

mance (both >0.9), while Office Space and Study Area lag,
likely due to visual ambiguity and overlapping furniture or
layout. This indicates that the model performs best in visually
distinctive domestic environments.

Action Recognizer:

Table 2 and Table 3 present detailed evaluation metrics for
both sedentary and non-sedentary actions across live video
scenes and benchmark datasets (UCEF50, GMDCSA). The
model achieved F1 scores of 0.867 for both action types in the
various private spaces, indicating strong generalization in per-
sonal care contexts. Non-sedentary detection is more variable
depending on the scenes, as the precision drops to 0.629, sug-
gesting that similar body positions may confuse activity types
in tight spaces.

Table 2: Performance metrics (accuracy, precision, recall, F1 score) for
detecting sedentary and non-sedentary actions using live video datasets
from various household scenes. Results show consistently high accuracy and
precision in certain occupational areas, whereas some areas, like bathrooms,

present challenges, highlighting opportunities for improvement in specific
environments.

Dataset Sedentary actions Non sedentary actions

Accuracy  Precision  Recall  F1Score  Accuracy  Precision  Recall  F1Score

Live Kitchen 0.765 0771 0867 0.815 0.700 0729 0.762 0.744
video
across

ot Bedroom 0.821 0.888 0.847 0.867 0.825 0.892 0.843 0.867
scenes

Bathroom 0794 0867 0832 0.849 0693 0629 0600 0614

Living Room 0719 0.763 0.800 0.781 0.707 0.814 0.688 0.745

Table 3: Evaluation of sedentary and non-sedentary action detection
performance using GMDSCA and UCF50 datasets, respectively. Results
demonstrate good accuracy, precision, recall, and F1 scores across both
datasets, with slightly higher overall performance for non-sedentary actions.

GMDCSA Dataset UCF50 Dataset
Sedentary actions Non sedentary actions
Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score
0.712 0.768 0.732 0.749 0.793 0.729 0.800 0.814

The following bar plot in Figure 6 illustrates the average
Euclidean distance between pose vectors representing a sub-
ject's posture across various actions, varying between static and
dynamic states. The y-axis, "Average distance between two
pose vectors," quantifies the degree of change from the indi-
vidual’s movement. Higher bars indicate a greater difference
between the static and dynamic poses for a specific action, sug-
gesting that there is significant movement or shifting. On the
contrary, lower bars reflect actions with minimal pose variation
when compared to a static pose. The x-axis labels each action,
allowing for better comparisons and analysis of how different
actions impact pose variation.
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Average Euclidean distance between pose vectors (with and without motion)
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Figure 6: Average Euclidean distances between pose vectors across various
domestic actions, indicating levels of movement from static to dynamic states.
Higher distances, such as those in "Watching TV" and "Playing Instruments,"
reflect greater motion variability, whereas actions like "Sitting" and "Lying
down" show minimal pose variations, illustrating lower movement intensity.
This analysis aids in accurately identifying motion anomalies during sedentary
behavior monitoring.

Motion Detection Sensitivity:

It measures the ability to detect movements accurately. It is
calculated by computing the Euclidean distance between two
pose vectors from the same time series but at different obser-
vation times. One of the sampling times is the current time,
and the other sampling time is T seconds in the past (T is kept
at 60 seconds and can be varied depending upon the scenario).
The following Figure 7 shows how much the pose has changed

over the sampling interval.
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Figure 7: Motion detection sensitivity measured through Euclidean distance
between current and past (60 seconds earlier) pose vectors over time. Distinct
action patterns highlight varying motion intensities, with significant pose
changes during actions like "Playing Instruments" and minimal movement
during "Lying down," underscoring system accuracy in detecting and
distinguishing subtle movements.

System Performance Metrics:

Latency, measured in seconds, refers to the time taken from
the action to the alert. Depending on the scenario, the latency
varies significantly. When an action happens within the con-
text of the scene, such as cooking food on the kitchen stove, the
system needs to compare Euclidean distances for a minimum
of around thirty seconds before confirming that there is limited
movement from the monitored individual. On the contrary, in
cases where the actions are out of context, the action would

be immediately flagged, triggering an alert within a few sec-
onds. The latencies for these scenarios are directly compared in
Table 4. In-context actions take longer to trigger alerts in the
SafeSight system because they require extended monitoring to
confirm anomalies, such as prolonged immobility, over a time
window (32-180 seconds). Out-of-context actions, being in-
herently anomalous, trigger immediate alerts within 2 seconds.
Table 4: Latency measurements (in seconds) comparing system alert
responses for out-of-context versus in-context actions. Immediate alerts (2
seconds) occur for anomalous, out-of-context actions, whereas contextually

appropriate actions require extended monitoring (32-180 seconds) before
triggering alerts.

Cases when out-of-context
actions happen

Cases when in-context
actions happen

Latency (seconds) 2 seconds 32 to 180 seconds

Throughput is the number of frames or actions processed
per second, which varies depending on how many models
have to be run on the frame. Based on the particular scenario,
throughput varies from 0.5 frames per second to 2 frames per
second in the system. Additionally, the system's alert accuracy
is dependent on the actions being tracked, differing between
sedentary and non-sedentary actions as pictured in Table 5.
Table 5: System alert accuracy comparing sedentary versus non-sedentary

actions. Non-sedentary actions achieve a higher accuracy (95%) compared to
sedentary actions (87%), reflecting better reliability in dynamic scenarios.

Sedentary actions Non-sedentary actions

Alert Accuracy 87% 95%

Applications:

SafeSight has potential for broad applications beyond
home-based monitoring for elderly individuals and children.
In healthcare settings, it can assist in continuous patient mon-
itoring, enabling early detection of fall events and tracking
rehabilitation progress. In educational environments, Safe-
Sight can enhance safety in classrooms and playgrounds,
particularly for young or special-needs children. In industrial
contexts, such as construction zones or chemical facilities, the
system can detect hazardous activity patterns or accidents in
real time. Additionally, SafeSight can be a powerful system
in law enforcement and correctional institutions by providing
monitoring to identify disturbances or violent events. Its pri-
vacy-preserving mechanisms make it suitable for public spaces,
balancing the need for security with ethical surveillance.

Future Implementations:

Future versions of SafeSight can incorporate multi-modal
sensing through depth cameras, LiDAR, and environmen-
tal sensors (e.g., temperature, gas, sound) to increase context
awareness. Integrating these data streams with more advanced
machine learning models can allow the system to work auton-
omously in complex scenarios, such as interactions between
multiple people or within larger crowds. SafeSight could also
be scaled to smart city infrastructures, where it would aid in
public safety, disaster response, and population-level behav-
ior monitoring in real-time. This evolution would support
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deployment in transportation hubs, senior living communi-
ties, or post-disaster relief zones. Scaling SafeSight for smart
cities and healthcare settings faces challenges, including high
computational demands and network bandwidth constraints.
Optimized algorithms and application-specific hardware will
ensure efficient, large-scale deployment while preserving per-
formance and privacy standards.

Despite visual masking, video monitoring may raise privacy
concerns for users, especially in private settings. SafeSight will
address these concerns by enhancing user control with custom-
izable monitoring schedules and consent protocols. Although
SafeSight’s accuracy decreases in environments with visual am-
biguity, future improvements will enhance scene differentiation
and refine non-sedentary action classification in constrained
spaces.

B Conclusion

The SafeSight project presents a real-time, privacy-pre-
serving monitoring system designed to safeguard vulnerable
populations through intelligent scene understanding and be-
havioral analysis. By combining camera-based infrastructure
with deep learning and vision-language models, SafeSight
distinguishes between sedentary and non-sedentary ac-
tions, enabling rapid detection of potential emergencies with
individual privacy protections. The architecture integrates con-
text-aware modules for scene classification, object detection,
motion analysis, and selective privacy masking. It effectively
addresses key challenges in conventional systems that rely on
wearable sensors. Experimental results show good performance,
with F1 scores above 0.86 for sedentary action detection in
live scenarios and high accuracy in context classification across
common household settings. While current results validate the
system’s reliability, future development will focus on improving
computational efficiency, enabling deployment at a larger scale,
and incorporating multi-modal sensing for enhanced scene
understanding.
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