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Retinal Photographs Improve the Diagnosis of Autism 
Spectrum Disorder      

Seyoung Park        
The Webb School, 1175 West Baseline Road, Claremont, CA, 91711, USA

ABSTRACT: Autism spectrum disorder (ASD) is a neurological and developmental condition that affects behavior, 
communication, and learning, often requiring lifelong support. Diagnosis by the age of two years can significantly reduce symptom 
severity and enhance cognitive, language, and social skills. However, current diagnostic methods rely heavily on subjective 
behavioral observations, rendering them prone to inaccuracies, stressful for caregivers, and time-consuming. To address this issue, 
this study introduces a novel and objective diagnostic system that utilizes retinal (fundus) photographs in conjunction with 
machine learning. The fast gradient sign method (FGSM), originally developed as an adversarial perturbation technique, was 
applied in this study to evaluate the robustness of convolutional neural networks in classifying ASD from retinal images. This 
robustness test also resulted in modest performance improvements across all tested models, surpassing baseline performances. 
These findings could aid the development of efficient, accurate, and non-invasive tools for early ASD detection and intervention, 
thereby significantly benefiting individuals with ASD and their families. Future studies should investigate additional adversarial 
methods and incorporate larger and more diverse datasets.  

KEYWORDS: Behavioral and Social Sciences, Neuroscience, Autism Spectrum Disorder, Retinal Photographs, Fast Gradient 
Sign Method. 

�   Introduction
Autism spectrum disorder (ASD) is a neurological and 

developmental condition that affects behavior, learning, and 
communication. It comprises a wide variety of types and sever-
ities among patients. ASD is a lifelong disorder that requires 
ongoing management, although medication and treatments 
can lessen its severity.1 Affecting one in 36 children,2 ASD 
occurs across all ages, sexes, and ethnicities, rendering early 
screening highly recommended. Early interventions for ASD, 
ideally at the age of two or younger, can significantly improve 
cognitive, language, and social interaction abilities.3

Traditional ASD diagnosis is a two-step process that involves 
healthcare providers, caregivers, and children. Wellness check-
ups and visits to healthcare providers help identify symptoms 
of ASD. Children with abnormal birth conditions or a family 
history of ASD undergo more thorough screening. Although 
ASD diagnosis is considered an accurate process, it involves a 
long-term examination, assessment, and conversations that can 
distress both caregivers and children. As it is complex, these 
subjective evaluations are not suitable for all cases. To address 
this problem, a previous study examined the use of machine 
learning models with retinal or fundus photographs to screen 
for ASD and evaluate symptom severity, demonstrating a cor-
relation between optic disc features and ASD diagnosis.4 As 
shown in Figure 1 Kim et al. evaluated the model performance 
by progressively removing 5% of the fundus photographs that 
were considered the least important to observe the change 
in the area under the receiver operating characteristic curve 
(AUC-ROC). Surprisingly, even when 95% of the imag-
es were removed, no significant change was observed in the 

AUC -ROC. However, when the area with the optic disc was 
masked, the AUC -ROC decreased abruptly.

(a)

(b)

Kim et al . demonstrated the feasibility of using machine 
learning and fundus photographs, particularly of the optic disc, 
to diagnose ASD. Nevertheless, their study had limitations, as 
the model was evaluated using only 1,890 eyes from 958 par-
ticipants, which could be considered a relatively small dataset.
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Figure 1: Previous studies on screening for ASD using fundus photographs. 
(a) Example of the data collection process; (b) Graph representing the AUC 
-ROC as the masked area of the image increases.4
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Additionally, the human bias and subjectivity introduced 
through the use of handcrafted features demonstrated the 
inconsistency in conducting this experiment. Recent studies 
have also emphasized both the opportunities and challenges of 
early ASD screening. For example, Okoye et al. reviewed the 
clinical benefits and risks of early ASD diagnosis, while Kim 
et al. demonstrated the feasibility of applying deep learning 
to retinal images.3,4 Furthermore, disparities in ASD diagnosis 
related to race and socioeconomic status have been document-
ed, underscoring the need for objective and widely applicable 
diagnostic methods.5-18 The present study provides a broader 
effort to improve accuracy, equity, and efficiency in ASD de-
tection. In particular, the study developed a machine learning 
and mathematics-based adversarial technology that effective-
ly used medical information. It focused on applying fundus 
photographs, particularly those of the optic discs, in systematic 
and mathematical approaches for ASD diagnosis.

ASD:
Individuals with ASD often experience difficult expressing 

themselves verbally and may rely on nonverbal body language.1 
Due to its detrimental effect on humans, ASD screening at a 
young age and early diagnosis are crucial in preventing severe 
impairment. Despite this need, the average age of ASD diag-
nosis in the United States is five years, even though ASD can 
be reliably diagnosed by specialists at age two.5

Traditional ASD diagnosis involves a thorough evaluation 
process, which includes collecting a developmental histo-
ry from parents or caregivers, observing the child's behavior, 
and using standardized screening tools such as the Modified 
Checklist for Autism in Toddlers (M -CHAT). Profession-
als apply the DSM-5 criteria and administer assessments, 
such as the Autism Diagnostic Observation Schedule and 
the Autism Diagnostic Interview (ADI) . A team of profes-
sionals conducts an evaluation comprising parental interviews, 
developmental testing, and, if necessary, hearing tests, vision 
screening, and genetic testing. Throughout the process, con-
tinuous monitoring is provided to refine and adjust as needed.6 
Hence, diagnosing ASD is a longlong-term process that can 
be exhaust ing for both caregivers and children. Additionally, 
the assessment is subjective and does not guarantee complete 
accuracy.

A previous study demonstrated the potential of using fundus 
photographs for accurate and objective diagnosis of ASD se-
verity. The calculated AUC-ROC values were 1.00 with a 95% 
CI for ASD screening and 0.74 with a 95% CI for symptom 
severity, indica ting that the model was highly reliable.4 These 

results demonstrate the importance of accessible, time-effi-
cient, and objective ASD screening and diagnosis.

Fundus Photographs:
Fundus photographs, also known as retinal photographs, 

show the fundus located at the back of the human eye. It 
comprises the retina, macula, fovea, optic nerve, and optic disc 
(Figure 3a). Fundus photography is easily performed in oph-
thalmology institutes using a fundus camera, which is a non 
-invasive, painless device. Colored fundus images are obtained 
and examined to determine the presence of diseases and dis-
orders.10 A recent device, depicted in Figure 3c, demonstrates 
a method for taking fundus photographs at home using a cell 
phone. These new devices, which have made fundus photogra-
phy more accessible, and machine learning technology, offer a 
non-invasive approach for observation and diagnosis at a low 
cost in a flexible environment.

Adversarial Perturbation:
Adversarial perturbation is a crucial concept in machine 

learning, originally developed to test the robustness and 
vulnerability of neural networks by introducing small, imper-
ceptible noise to the input data. Such perturbations, though 
invisible to the human eye, can lead to significant misclassi-
fications, thereby exposing the limitations of neural network 
models.14 Rather than serving as a traditional augmentation 
technique, adversarial perturbation is designed to challenge 
models under controlled distortions, enabling the evaluation of 
model stability and generalization. Among various adversarial 
methods, this study focused on the fast gradient sign method 
(FGSM), applying it as a robustness-oriented experiment to 
assess how convolutional neural networks respond to pertur-
bations in retinal images.15

The FGSM utilizes the gradients of the loss function with 
respect to the input data to determine the perturbations ap-
plied to the input. For instance, the neural network identifies 
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Figure 2: Three scenes portrayportraying ASD diagnoses. (a) Hearing 
test for ASD screening7; (b) ASD screening with a therapist8; (c) A toddler 
undergoing ASD screening.9

Figure 3: Fundus photograph. (a) Example of a colored fundus photograph11; 
(b) Traditional method of observing the eye in an ophthalmology institute12; 
(c) Mobile phone-based fundus imaging device.13

Figure 4: Adversarial perturbation.1 Minimal adversarial noise (0.007 
magnitudes) significantly shifts the model prediction from panda (57.7%) to 
gibbon (99.3%) illustrating the vulnerability of convolutional neural networks 
(CNN).

(a)

(a)

(b)

(b)

(c)

(c)
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the image as that of a panda with a confidence level of 57.7% 
(Figure 4) . However, when a small amount of noise (denoted 
as 0.007 times a specific color pattern) is added by calculating 
the gradients of the loss function of the input image, it can 
effectively mislead the model into classifying the image ina 
ccurately. The model identifies the perturbation pattern as a 
nematode with 8.2% confidence, which is irrelevant, but il-
lustrates the additional randomness of the adversarial pattern. 
Although the resulting image appears to be a panda to human 
eyes, it is classified as a gibbon with 99.3% confidence, indicat-
ing a misclassification by the neural network and a significant 
shift caused by a slight alteration in the input image.16

�   Methods
This study applied FGSM, a commonly used adversarial 

perturbation method, to add noise that disturbs the learn-
ing process. Three novel methods were explored: additivity 
of the FGSM attack on the fundus photograph, additivity of 
the FGSM attack solely on the optic nerve head of the pho-
tograph, and complete removal of the optic nerve head from 
the photograph. These methods were examined to estimate 
changes in the accuracy of the method when adversarial per-
turbation was added , as well as the role of the optic nerve head 
in ASD diagnosis.

Baseline:

Figure 5 illustrates the basic process for predicting symptom 
severity using the baseline model. This is the basic architecture 
of the classification network used in this study. The network 
uses a fundus photograph as an input 𝐼 ∈ 𝑅𝐻𝑊 and generates 
feature maps. H and W denote the height and width of the 
fundus photograph, respectively. Fundus features, the output of 
a convolutional neural network, are represented as a three-di-
mensional matrix denoted by z €〖R〗^l. This leads to the 
FCNN, which outputs different probability values for each of 
the four possibilities: normal, mild, moderate, and severe. As 
illustrated by the different colors in Figure 5, each element has 
a score value, which can be altered into a probability using the 
Softmax function. This probability represents the model's pre-
diction of the possibility of this symptom range. This process 
can be defined as: 𝐹𝐶𝑁𝑁: 𝑍 → 𝑃.

Equation 1. Softmax function.

Equation 1 illustrates the Softmax function, which converts 
a set of raw scores into probabilities that are easier to interpret 
and work with when utilizing machine learning. 𝑃 k is the out-

put or the probability assigned to class k, 𝑆𝑘 is the score for 
k, and ∑𝒋 𝒆

𝒔𝒋 It is the sum of the exponentials of all the raw 
scores. By exponentiating each score, the equation checks all 
outputs. Normalizing these values by dividing by the sum of all 
the exponentials of the scores ensures that output probabilities, 
when added up, equal one.

Equation 2. Cross-entropy loss function.

Equation 2 presents the cross-entropy loss function, which 
evaluates a model's performance by comparing its predicted 
probability distribution with the actual distribution. Lce is the 
output of the cross-entropy loss or the probability value be-
tween 0 and 1, where loge represents the natural logarithm, and 
P is the predicted probability of the correct class. Specifically, 
the loss value is quantified by taking the negative logarithm 
of the predicted value, thereby minimizing this loss value and 
improving the model's ability to make accurate predictions. A 
loss value closer to one indicates a lower loss, whereas a loss 
value closer to zero indicates a higher loss.

Proposed Noise Model (Fundus):

Figure 6 illustrates the architecture of the first additive pro-
posed in this study for classifying ASD symptom severity. All 
processes were identical to the baseline architecture, except 
for the input of the image, which included an FGSM-applied 
fundus photograph. The FGSM is a picture comprising small 
dots of color, which makes no difference in how a human 
views the photo; however, it renders machine learning more 
challenging for computers. The noise value was denoted as 
Ntotal. This FGSM attack is mathematically constructed by 
reverse-engineering a typical gradient-descent algorithm. A 
typical gradient descent algorithm iteratively uses input and 
gradient values to produce a better optimized result through 
extensive calculations. Instead of using the gradient descent 
algorithm to increase our output value positively, the gradient 
values are included in Ntotal to make training more difficult. To 
improve the results, the noise value increases in every sample.

Figure 5: Baseline convolutional neural network (CNN) architecture for 
ASD severity classification.

Figure 6: Noise model with fast gradient sign method (FGSM) applied to 
entire fundus images.
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of children and adolescents without the disorder, and 20,050 
(35.1%) were samples of children and adolescents with ASD. 
In terms of age distribution, 27.70% of the samples were from 
children under seven years of age, 43.57% were from children 
aged 7–12 years, and 28.73% were from adolescents aged 13–
20 years. Additionally, the ratio of the samples used for training 
and testing was 8:2.

�   Result and Discussion 
Evaluation of the FGSM Applied Model:

Figures 9a and 9b, along with Table 1, present the 
performance comparison graph, confusion matrix, and sum-
mary table, respectively, offering insights into the experimental 
results of evaluating the performance of various CNNs, partic-
ularly focusing on how they handle adversarial perturbations 
(FGSM) in the symptom severity assessment of ASD through 
fundus photographs. Figure 9a shows the performance metrics 
(accuracy, recall, precision, and F1-score) for the four CNN 
architectures: ConvNeXt, DenseNet-201, ResNet-101, and 
ResNet-152. ResNet-152, which is a deep network with 152 
layers, outperformed the other models across all metrics, indi-
cating that it was the most effective model for this task.

ConvNeXt, with 50 layers, showed the lowest performance, 
particularly in terms of recall (a measure of true positives 
from all positive samples) and precision (a measure of positive 
predictions), suggesting that it may not be as reliable for cor-
rectly identifying both positive and negative cases. The table in 
Figure 9a provides a detailed breakdown of the performance 
comparison graph for each model, reinforcing the observation 
that ConvNeXt lags behind the other models, presumably be-
cause of its shallow layers, which hinder complex studies with 
FGSM.

Proposed Noise Model (Optic Nerve Head):

Figure 7 shows the architecture of the second additive pro-
posed in this study, in which noise was added to the optic 
nerve head area. Similar to the first additivity, all processes are 
identical except for the input, which is a picture with noise 
or FGSM applied solely to the optic disc of the fundus pho-
tograph. The input is denoted by Ndisc. As the optic disc is 
a crucial part of ASD diagnosis, it can be hypothesized that 
the accuracy does not increase by adding noise to this specific 
system. However, this experiment further investigated whether 
the accuracy would be maintained by adding noise to the optic 
disc specifically, rather than the entire fundus photograph, and, 
if not, the rate of decrease in comparison to the proposed noise 
model in Equation 2. This experiment also used a cross-entro-
py loss function.

Proposed Noise Model (Optic Nerve Head Removed):

Figure 8 illustrates the architecture of the last model, in 
which the optic nerve head has been removed from the pho-
tograph. The process is identical; however, the input differs 
because the optic nerve head is completely removed. This in-
put is referred to as Inodisc. It is created through simple coding 
by changing the existing pixel values of the optic disc to black, 
given the disc area.

Fundus Dataset:
This study used a dataset from the AI Hub, a govern-

ment-funded database in Korea, to conduct experiments.17 
The most recently updated version of the data dated January 
19, 2024 was utilized. From 1,038,674 samples representing 
various diagnoses of disorders in children and adolescents, 
57,195 samples consisting solely of fundus photographs from 
children and adolescents with ASD and those without any di-
agnosed disorders were collected.

Although the samples were exclusively from South Korea 
and comprised data on South Koreans, this should not af-
fect the accuracy of the experiment, as ASD is not correlated 
with a specific ethnicity.18 Among the 57,195 samples, 37,145 
(64.9%) were normal and consisted of fundus photographs 
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Figure 7: Noise model with FGSM applied only to the optic disc region.

Figure 9: Evaluation results. (a) Comparison of accuracy, recall, precision, 
and F1-score across four CNN architectures with FGSM applied to the entire 
fundus image, showing that ResNet-152 outperforms the others in all metrics. 
(b) Confusion matrix for ResNet-152 under FGSM perturbation, achieving 
89.11% accuracy. High true-positive and true-negative rates indicate strong 
robustness to adversarial noise.

Figure 8: Noise model with the optic disc region removed from fundus 
images.

Table 1: Evaluation result of the FGSM applied model (fundus): a 
comparison of performance metrics (accuracy, recall, precision, and F1-score) 
across four CNN architectures under adversarial perturbation applied to entire 
fundus images.

(a) (b)
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model, using a different approach to define the impact of the 
optic disc on diagnosing ASD symptom severity. It also com-
pares the accuracies of four different neural networks in this 
architecture. Applying the FGSM to the optic disc resulted 
in performance improvements for all tested models. Specifi-
cally, ConvNeXt, which was the least accurate when tested in 
baseline architecture, showed a performance increase of 2.96, 
whereas ResNet-152 maintained its high accuracy with an 
increase of 3.06. These improvements highlight the efficacy 
of the FGSM in enhancing model performance by effectively 
preprocessing the input image. The graph further emphasiz-
es the performance gap when the FGSM was added to the 
baseline model, highlighting that applying the FGSM to the 
fundus photograph was more accurate than applying it solely 
to the optic disc. However, for DenseNet-201, the perfor-
mance gap was 0.01, indicating that applying the FGSM to 
optic discs or full fundus photography did not make a notice-
able difference in diagnosing the severity of ASD symptoms.

Evaluation of Optic Nerve Head Removal Model:

The second ablation study focused on the performance of 
various neural network architectures when the optic nerve head 
was removed entirely from the fundus photographs. As shown 
in Table 3, the accuracy of the different models in diagnosing 
the symptom severity of ASD decreased drastically to 70% 
when the optic nerve head was removed from the input image, 
compared to the baseline (the original study without FGSM 
applied). ConvNeXt, with 50 layers, showed the most signifi-
cant performance drop of 9.07, indicating a high dependency 
on optic nerve head information. Simultaneously, ResNet-101 

Thus, the findings suggest that machine learning models, 
particularly deep-learning CNNs, can serve as powerful tools 
for ASD screening and symptom severity assessment by ac-
curately analyzing retinal images. Spesifically, the confusion 
matrix shown in Figure 9b indicates an overall accuracy of 
89.11%. The gradation scale measures accuracy, with dark blue 
indicating the least accurate and light blue indicating the most 
accurate. Visually, the true-positive (correctly identified ASD 
patients using fundus photographs) and true-negative (cor-
rectly identified non-ASD patients using fundus photographs) 
rates were low. In contrast, there were false-positive results 
(identified as non-ASD patients with ASD). The false-neg-
ative rates (identifying ASD patients as non-ASD) are low, 
indicating that the model correctly identifies the majority of 
the given dataset.

Therefore, the application of FGSM should primarily be 
interpreted as a robustness test, assessing the stability of CNN 
models under perturbation. The observed improvements in ac-
curacy suggest that, beyond withstanding adversarial noise, the 
models demonstrated enhanced generalization. This refram-
ing highlights FGSM’s role in testing model robustness rather 
than serving as a conventional data augmentation method.
These results confirm that deep-learning CNNs, particular-
ly ResNet-152 among the ones tested, are effective tools for 
ASD screening and symptom assessment.

Optic Disc Area Applied:

This ablation study compared the effects of applying FGSM 
solely to the optic disc area with a baseline (without FGSM) 

DOI: 10.36838/v8i2.13

Figure 10: Ablation study results. Accuracy comparison across four CNN 
architectures for baseline, FGSM applied to the entire fundus, and FGSM 
applied only to the optic disc. Both FGSM conditions improved accuracy over 
baseline, with full-fundus FGSM showing slightly higher gains. ResNet-152 
achieved the highest accuracy in all settings, indicating strong robustness to 
perturbation.

Figure 11: Evaluation result of optic nerve head removal experiment: 
accuracy comparison across CNN architectures, highlighting the performance 
drop when the optic nerve head is removed versus the baseline and FGSM 
(optic disc) conditions.

Table 2: Comparison of model accuracy when the FGSM perturbation is 
applied only to the optic disc area versus baseline without perturbation. All 
four CNN architectures showed accurate improvements, with ResNet-152 
achieving the highest increase (3.06%). These results suggest that localized 
perturbation to the optic disc can enhance model performance.

Table 3: Accuracy comparison across four CNN architectures for baseline 
and when the optic nerve head is entirely removed from fundus images. The 
removal of the optic disc resulted in a substantial performance drop for all 
models, with ConvNeXt showing the most significant decrease (−9.07%) 
and ResNet-101 showing the smallest (−6.67%). These results highlight the 
critical role of optic disc information in ASD severity classification from 
retinal images.
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experienced the smallest performance drop of 6.67, suggesting 
greater robustness in removing this feature. Overall, all neural 
network architectures experienced a significant decline in per-
formance, underscoring the importance of the optic nerve head 
in medical imaging tasks, particularly in the diagnosis of ASD.

Figure 11 summarizes the performance gap between the 
baseline, optic nerve head removed, and FGSM applied to 
the input images. The FGSM results consistently showed a 
higher performance than both the baseline and the removed 
optic nerve head, suggesting that FGSM may be a more effec-
tive preprocessing method for enhancing model performance. 
Among the various models, ResNet-152 demonstrated the 
highest accuracy in evaluating fundus photographs for both 
the baseline and FGSM, underscoring the significance of the 
depth of the neural network in its performance. These insights 
provide a step-ahead solution for accurately diagnosing symp-
tom severity in ASD, which is valuable for future model design 
and selection in medical imaging applications.

�   Conclusion 
This study proposed and evaluated a novel system to diagnose 

ASD symptom severity using fundus photographs, focusing on 
the optic disc and the FGSM. This study applied FGSM as 
a robust-oriented perturbation technique to the entire fundus 
photograph and specifically to the optic disc, demonstrating 
that adversarial perturbation enhanced smodel performance. 
Furthermore, this study systematically the significance of the 
optic disc by comparing the accuracy of ASD diagnosis follow-
ing its complete removal. The findings revealed that applying 
the FGSM to the optic disc significantly improve diagnostic 
accuracy across multiple neural network architectures, surpass-
ing the baseline performance. Performance noticeably declined 
when the optic disc was removed entirely, underscoring the 
critical role of the optic disc in medical imaging tasks. More-
over, an analysis of various models showed that the deeper 
layers of feature maps were correlated with performance ac-
curacy. Overall, findings could help develop robust, effective, 
and non-invasive diagnostic tools for ASD, thereby improving 
early detection and intervention strategies.

Despite these promising results, this study has several 
limitations. First, the dataset was limited to pediatric and ado-
lescent fundus images from South Korea. Further validation on 
more diverse, multi-ethnic cohorts is necessary. Second, while 
FGSM perturbations were useful as a robustness test, they rep-
resent only one type of adversarial approach; future research 
should explore additional techniques such as PGD (Project-
ed Gradient Descent) or DeepFool. Finally, this study focused 
exclusively on retinal imaging. Future studies integrating mul-
timodal data (e.g., genetic, behavioral, or linguistic features) 
could enhance diagnostic performance. Addressing these lim-
itations will be essential to ensure the clinical applicability of 
this approach.
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