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Retinal Photographs Improve the Diagnosis of Autism
Spectrum Disorder

Seyoung Park
The Webb School, 1175 West Baseline Road, Claremont, CA, 91711, USA

ABSTRACT: Autism spectrum disorder (ASD) is a neurological and developmental condition that affects behavior,
communication, and learning, often requiring lifelong support. Diagnosis by the age of two years can significantly reduce symptom
severity and enhance cognitive, language, and social skills. However, current diagnostic methods rely heavily on subjective
behavioral observations, rendering them prone to inaccuracies, stressful for caregivers, and time-consuming. To address this issue,
this study introduces a novel and objective diagnostic system that utilizes retinal (fundus) photographs in conjunction with
machine learning. The fast gradient sign method (FGSM), originally developed as an adversarial perturbation technique, was
applied in this study to evaluate the robustness of convolutional neural networks in classifying ASD from retinal images. This
robustness test also resulted in modest performance improvements across all tested models, surpassing baseline performances.
These findings could aid the development of efficient, accurate, and non-invasive tools for early ASD detection and intervention,
thereby significantly benefiting individuals with ASD and their families. Future studies should investigate additional adversarial
methods and incorporate larger and more diverse datasets.

KEYWORDS: Behavioral and Social Sciences, Neuroscience, Autism Spectrum Disorder, Retinal Photographs, Fast Gradient
Sign Method.

B |Introduction AUC -ROC. However, when the area with the optic disc was
Autism spectrum disorder (ASD) is a neurological and masked, the AUC -ROC decreased abruptly.
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can lessen its severity.! Affecting one in 36 children,> ASD age 5) .....
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Traditional ASD diagnosis is a two-step process that involves

healthcare providers, caregivers, and children. Wellness check-

ups and visits to healthcare providers help identify symptoms

of ASD. Children with abnormal birth conditions or a family

history of ASD undergo more thorough screening. Although

ASD diagnosis is considered an accurate process, it involves a

long-term examination, assessment, and conversations that can [2 e
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learning models with retinal or fundus photographs to screen Fraction of efased image area
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shown in Figure 1 Kim ez a/. evaluated the model performance -ROC as the masked area of the image increases.*

by progressively removing 5% of the fundus photographs that
were considered the least important to observe the change
in the area under the receiver operating characteristic curve
(AUC-ROC). Surprisingly, even when 95% of the imag-

es were removed, no significant change was observed in the
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Kim e a/ . demonstrated the feasibility of using machine
learning and fundus photographs, particularly of the optic disc,
to diagnose ASD. Nevertheless, their study had limitations, as
the model was evaluated using only 1,890 eyes from 958 par-
ticipants, which could be considered a relatively small dataset.
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Additionally, the human bias and subjectivity introduced
through the use of handcrafted features demonstrated the
inconsistency in conducting this experiment. Recent studies
have also emphasized both the opportunities and challenges of
early ASD screening. For example, Okoye ef a/. reviewed the
clinical benefits and risks of early ASD diagnosis, while Kim
et al. demonstrated the feasibility of applying deep learning
to retinal images.** Furthermore, disparities in ASD diagnosis
related to race and socioeconomic status have been document-
ed, underscoring the need for objective and widely applicable
diagnostic methods.*® The present study provides a broader
effort to improve accuracy, equity, and efficiency in ASD de-
tection. In particular, the study developed a machine learning
and mathematics-based adversarial technology that effective-
ly used medical information. It focused on applying fundus
photographs, particularly those of the optic discs, in systematic
and mathematical approaches for ASD diagnosis.

ASD:

Individuals with ASD often experience difficult expressing
themselves verbally and may rely on nonverbal body language.
Due to its detrimental effect on humans, ASD screening at a
young age and early diagnosis are crucial in preventing severe
impairment. Despite this need, the average age of ASD diag-
nosis in the United States is five years, even though ASD can
be reliably diagnosed by specialists at age two.®

Traditional ASD diagnosis involves a thorough evaluation
process, which includes collecting a developmental histo-
ry from parents or caregivers, observing the child's behavior,
and using standardized screening tools such as the Modified
Checklist for Autism in Toddlers (M -CHAT). Profession-
als apply the DSM-5 criteria and administer assessments,
such as the Autism Diagnostic Observation Schedule and
the Autism Diagnostic Interview (ADI) . A team of profes-
sionals conducts an evaluation comprising parental interviews,
developmental testing, and, if necessary, hearing tests, vision
screening, and genetic testing. Throughout the process, con-
tinuous monitoring is provided to refine and adjust as needed.®
Hence, diagnosing ASD is a longlong-term process that can
be exhaust ing for both caregivers and children. Additionally,

the assessment is subjective and does not guarantee complete

accuracy.

/(7C)

Figure 2: Three scenes portrayportraying ASD diagnoses. (a) Hearing
test for ASD screening’; (b) ASD screening with a therapist®; (c) A toddler
undergoing ASD screening.’

A previous study demonstrated the potential of using fundus
photographs for accurate and objective diagnosis of ASD se-
verity. The calculated AUC-ROC values were 1.00 with a 95%
CI for ASD screening and 0.74 with a 95% CI for symptom
severity, indica ting that the model was highly reliable.* These

results demonstrate the importance of accessible, time-effi-
cient, and objective ASD screening and diagnosis.

Fundus Photographs:

Fundus photographs, also known as retinal photographs,
show the fundus located at the back of the human eye. It
comprises the retina, macula, fovea, optic nerve, and optic disc
(Figure 3a). Fundus photography is easily performed in oph-
thalmology institutes using a fundus camera, which is a non
-invasive, painless device. Colored fundus images are obtained
and examined to determine the presence of diseases and dis-
orders.”® A recent device, depicted in Figure 3¢, demonstrates
a method for taking fundus photographs at home using a cell
phone. These new devices, which have made fundus photogra-
phy more accessible, and machine learning technology, offer a
non-invasive approach for observation and diagnosis at a low
cost in a flexible environment.

(a)

Figure 3: Fundus photograph. (a) Example of a colored fundus photograph'’;
(b) Traditional method of observing the eye in an ophthalmology institute'’
(c) Mobile phone-based fundus imaging device.'

Adversarial Perturbation:

Adversarial perturbation is a crucial concept in machine
learning, originally developed to test the robustness and
vulnerability of neural networks by introducing small, imper-
ceptible noise to the input data. Such perturbations, though
invisible to the human eye, can lead to significant misclassi-
fications, thereby exposing the limitations of neural network
models.” Rather than serving as a traditional augmentation
technique, adversarial perturbation is designed to challenge
models under controlled distortions, enabling the evaluation of
model stability and generalization. Among various adversarial
methods, this study focused on the fast gradient sign method
(FGSM), applying it as a robustness-oriented experiment to
assess how convolutional neural networks respond to pertur-
bations in retinal images."

+.007 x

nematode
8.2% confidence
Figure 4: Adversarial perturbation.! Minimal adversarial noise (0.007
magnitudes) significantly shifts the model prediction from panda (57.7%) to
gibbon (99.3%) illustrating the vulnerability of convolutional neural networks
(CNN).

“panda”
57.7% confidence

“gibbon™
99.3 % confidence

The FGSM utilizes the gradients of the loss function with
respect to the input data to determine the perturbations ap-
plied to the input. For instance, the neural network identifies
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the image as that of a panda with a confidence level of 57.7%
(Figure 4) . However, when a small amount of noise (denoted
as 0.007 times a specific color pattern) is added by calculating
the gradients of the loss function of the input image, it can
effectively mislead the model into classifying the image ina
ccurately. The model identifies the perturbation pattern as a
nematode with 8.2% confidence, which is irrelevant, but il-
lustrates the additional randomness of the adversarial pattern.
Although the resulting image appears to be a panda to human
eyes, it is classified as a gibbon with 99.3% confidence, indicat-
ing a misclassification by the neural network and a significant
shift caused by a slight alteration in the input image.'®

B Methods

This study applied FGSM, a commonly used adversarial
perturbation method, to add noise that disturbs the learn-
ing process. Three novel methods were explored: additivity
of the FGSM attack on the fundus photograph, additivity of
the FGSM attack solely on the optic nerve head of the pho-
tograph, and complete removal of the optic nerve head from
the photograph. These methods were examined to estimate
changes in the accuracy of the method when adversarial per-
turbation was added , as well as the role of the optic nerve head

in ASD diagnosis.
O Predicted
1 - A O Symptom Severity
4] ‘ﬁ'z:.f. A o™ O
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Fully-Connected Neural Network

Baseline:

Convolutional Neural Network

Figure 5: Baseline convolutional neural network (CNN) architecture for
ASD severity classification.

Figure 5 illustrates the basic process for predicting symptom
severity using the baseline model. This is the basic architecture
of the classification network used in this study. The network
uses a fundus photograph as an input I € RHW and generates
feature maps. H and W denote the height and width of the
fundus photograph, respectively. Fundus features, the output of
a convolutional neural network, are represented as a three-di-
mensional matrix denoted by z € [R]] AL This leads to the
FCNN, which outputs different probability values for each of
the four possibilities: normal, mild, moderate, and severe. As
illustrated by the different colors in Figure 5, each element has
a score value, which can be altered into a probability using the
Softmax function. This probability represents the model's pre-
diction of the possibility of this symptom range. This process
can be defined as: FCNN: Z — P.

Equation 1. Softmax function.

eSk

S
z je’t
Equation 1 illustrates the Softmax function, which converts

a set of raw scores into probabilities that are easier to interpret
and work with when utilizing machine learning. Pk is the out-

sz

put or the probability assigned to class k, Sk is the score for
k, and ZJ, e It is the sum of the exponentials of all the raw
scores. By exponentiating each score, the equation checks all
outputs. Normalizing these values by dividing by the sum of all
the exponentials of the scores ensures that output probabilities,
when added up, equal one.

Equation 2. Cross-entropy loss function.
Lee = —log.P

Equation 2 presents the cross-entropy loss function, which
evaluates a model's performance by comparing its predicted
probability distribution with the actual distribution. L, is the
output of the cross-entropy loss or the probability value be-
tween 0 and 1, where log, represents the natural logarithm, and
P is the predicted probability of the correct class. Specifically,
the loss value is quantified by taking the negative logarithm
of the predicted value, thereby minimizing this loss value and
improving the model's ability to make accurate predictions. A
loss value closer to one indicates a lower loss, whereas a loss
value closer to zero indicates a higher loss.

Proposed Noise Model (Fundus):

(FGSM applied to fundus)

Figure 6: Noise model with fast gradient sign method (FGSM) applied to
entire fundus images.
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Figure 6 illustrates the architecture of the first additive pro-
posed in this study for classifying ASD symptom severity. All
processes were identical to the baseline architecture, except
for the input of the image, which included an FGSM-applied
fundus photograph. The FGSM is a picture comprising small
dots of color, which makes no difference in how a human
views the photo; however, it renders machine learning more
challenging for computers. The noise value was denoted as
Nz This FGSM attack is mathematically constructed by
reverse-engineering a typical gradient-descent algorithm. A
typical gradient descent algorithm iteratively uses input and
gradient values to produce a better optimized result through
extensive calculations. Instead of using the gradient descent
algorithm to increase our output value positively, the gradient
values are included in Ny, to make training more difficult. To
improve the results, the noise value increases in every sample.
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Proposed Noise Model (Optic Nerve Head):

. Convolutional Neural Network

(FGSM applied to optic nerve head)
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Figure 7: Noise model with FGSM applied only to the optic disc region.

Figure 7 shows the architecture of the second additive pro-
posed in this study, in which noise was added to the optic
nerve head area. Similar to the first additivity, all processes are
identical except for the input, which is a picture with noise
or FGSM applied solely to the optic disc of the fundus pho-
tograph. The input is denoted by Ny, As the optic disc is
a crucial part of ASD diagnosis, it can be hypothesized that
the accuracy does not increase by adding noise to this specific
system. However, this experiment further investigated whether
the accuracy would be maintained by adding noise to the optic
disc specifically, rather than the entire fundus photograph, and,
if not, the rate of decrease in comparison to the proposed noise
model in Equation 2. This experiment also used a cross-entro-
py loss function.

Proposed Noise Model (Optic Nerve Head Removed):
Predicted

- O b, . O Symptom Severity
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Figure 8: Noise model with the optic disc region removed from fundus
images.

Figure 8 illustrates the architecture of the last model, in
which the optic nerve head has been removed from the pho-
tograph. The process is identical; however, the input differs
because the optic nerve head is completely removed. This in-
put is referred to as I,, 4, It is created through simple coding
by changing the existing pixel values of the optic disc to black,
given the disc area.

Fundus Dataset:

This study used a dataset from the Al Hub, a govern-
ment-funded database in Korea, to conduct experiments.'”
The most recently updated version of the data dated January
19, 2024 was utilized. From 1,038,674 samples representing
various diagnoses of disorders in children and adolescents,
57,195 samples consisting solely of fundus photographs from
children and adolescents with ASD and those without any di-
agnosed disorders were collected.

Although the samples were exclusively from South Korea
and comprised data on South Koreans, this should not af-
fect the accuracy of the experiment, as ASD is not correlated
with a specific ethnicity."® Among the 57,195 samples, 37,145
(64.9%) were normal and consisted of fundus photographs

of children and adolescents without the disorder, and 20,050
(35.1%) were samples of children and adolescents with ASD.
In terms of age distribution, 27.70% of the samples were from
children under seven years of age, 43.57% were from children
aged 7-12 years, and 28.73% were from adolescents aged 13—
20 years. Additionally, the ratio of the samples used for training
and testing was 8:2.

B Result and Discussion
Ewvaluation of the FGSM Applied Model:

Table 1: Evaluation result of the FGSM applied model (fundus): a
comparison of performance metrics (accuracy, recall, precision, and F1-score)
across four CNN architectures under adversarial perturbation applied to entire
fundus images.

FGSM (Fundus) Accuracy Recall Precision F1-Score
ConvNeXt19 86.70 86.12 85.97 86.04
DenseNet-20120 87.55 87.12 86.60 86.86
ResNet-10121 87.93 87.34 86.55 86.94
ResNet-15221 89.11 88.58 87.82 88.20
Performance Comparison (|
—+— ConvNext
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(a) (b)
Figure 9: Evaluation results. (a) Comparison of accuracy, recall, precision,
and F1-score across four CNN architectures with FGSM applied to the entire
fundus image, showing that ResNet-152 outperforms the others in all metrics.
(b) Confusion matrix for ResNet-152 under FGSM perturbation, achieving
89.11% accuracy. High true-positive and true-negative rates indicate strong
robustness to adversarial noise.

Accuracy Fl-Score

Figures 9a and 9b, along with Table 1, present the
performance comparison graph, confusion matrix, and sum-
mary table, respectively, offering insights into the experimental
results of evaluating the performance of various CNNss, partic-
ularly focusing on how they handle adversarial perturbations
(FGSM) in the symptom severity assessment of ASD through
fundus photographs. Figure 9a shows the performance metrics
(accuracy, recall, precision, and F1-score) for the four CNN
architectures: ConvNeXt, DenseNet-201, ResNet-101, and
ResNet-152. ResNet-152, which is a deep network with 152
layers, outperformed the other models across all metrics, indi-
cating that it was the most effective model for this task.

ConvNeXt, with 50 layers, showed the lowest performance,
particularly in terms of recall (a measure of true positives
from all positive samples) and precision (a measure of positive
predictions), suggesting that it may not be as reliable for cor-
rectly identifying both positive and negative cases. The table in
Figure 9a provides a detailed breakdown of the performance
comparison graph for each model, reinforcing the observation
that ConvNeXt lags behind the other models, presumably be-
cause of its shallow layers, which hinder complex studies with
FGSM.
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Thus, the findings suggest that machine learning models,
particularly deep-learning CNNss, can serve as powerful tools
for ASD screening and symptom severity assessment by ac-
curately analyzing retinal images. Spesifically, the confusion
matrix shown in Figure 9b indicates an overall accuracy of
89.11%. The gradation scale measures accuracy, with dark blue
indicating the least accurate and light blue indicating the most
accurate. Visually, the true-positive (correctly identified ASD
patients using fundus photographs) and true-negative (cor-
rectly identified non-ASD patients using fundus photographs)
rates were low. In contrast, there were false-positive results
(identified as non-ASD patients with ASD). The false-neg-
ative rates (identifying ASD patients as non-ASD) are low,
indicating that the model correctly identifies the majority of
the given dataset.

Therefore, the application of FGSM should primarily be
interpreted as a robustness test, assessing the stability of CNN
models under perturbation. The observed improvements in ac-
curacy suggest that, beyond withstanding adversarial noise, the
models demonstrated enhanced generalization. This refram-
ing highlights FGSM’s role in testing model robustness rather
than serving as a conventional data augmentation method.
These results confirm that deep-learning CNNss, particular-
ly ResNet-152 among the ones tested, are effective tools for
ASD screening and symptom assessment.

Optic Disc Area Applied:

Table 2: Comparison of model accuracy when the FGSM perturbation is
applied only to the optic disc area versus baseline without perturbation. All
four CNN architectures showed accurate improvements, with ResNet-152
achieving the highest increase (3.06%). These results suggest that localized
perturbation to the optic disc can enhance model performance.

FGSM FGSM Baseline
(Optic disc) (Optic Disc; Accuracy) (Accuracy)
ConvNeXt 86.5 83.54
DenseNet-201 87.54 84.18
ResNet-101 87.82 84.34
ResNet-152 88.89 85.83

Performance Gap (fundus vs optic disc) % FGSM (fundus) X FGSM (optic disc)

A Baseline
100 4
95 3
" 77 88.89 )
87.54 ; _—k 89.11
86.54 e g7m55e———ke=87:03
Fe=867
” ‘__’_’_—A—_—A’/A !
85.83

83.54 84qi8 8434

% ( ) 1,

ConvNeXt (50) DenseNet-201 ResNet-101 ResNet-152

Figure 10: Ablation study results. Accuracy comparison across four CNN
architectures for baseline, FGSM applied to the entire fundus, and FGSM
applied only to the optic disc. Both FGSM conditions improved accuracy over
baseline, with full-fundus FGSM showing slightly higher gains. ResNet-152
achieved the highest accuracy in all settings, indicating strong robustness to
perturbation.

This ablation study compared the effects of applying FGSM
solely to the optic disc area with a baseline (without FGSM)

model, using a different approach to define the impact of the
optic disc on diagnosing ASD symptom severity. It also com-
pares the accuracies of four different neural networks in this
architecture. Applying the FGSM to the optic disc resulted
in performance improvements for all tested models. Specifi-
cally, ConvNeXt, which was the least accurate when tested in
baseline architecture, showed a performance increase of 2.96,
whereas ResNet-152 maintained its high accuracy with an
increase of 3.06. These improvements highlight the efficacy
of the FGSM in enhancing model performance by effectively
preprocessing the input image. The graph further emphasiz-
es the performance gap when the FGSM was added to the
baseline model, highlighting that applying the FGSM to the
fundus photograph was more accurate than applying it solely
to the optic disc. However, for DenseNet-201, the perfor-
mance gap was 0.01, indicating that applying the FGSM to
optic discs or full fundus photography did not make a notice-
able difference in diagnosing the severity of ASD symptoms.

Evaluation of Optic Nerve Head Removal Model:

Table 3: Accuracy comparison across four CNN architectures for baseline
and when the optic nerve head is entirely removed from fundus images. The
removal of the optic disc resulted in a substantial performance drop for all
models, with ConvNeXt showing the most significant decrease (-9.07%)
and ResNet-101 showing the smallest (-6.67%). These results highlight the
critical role of optic disc information in ASD severity classification from
retinal images.

Optic Nerve Head Removed (Accuracy) Baseline (Accuracy)
ConvNeXt 74.47 83.54
DenseNet-201 76.35 84.18
ResNet-101 77.67 84.34
ResNet-152 77.98 85.83
CPerformance Gap (Baseline vs optic nerve head removed)
A Optic Nerve Head Removed X Basline & FGSM (Optic Disc)
100 9.07 10
7.83 7.85
8
6.67
. 88:89
90 | 865 87.54 —87.82__ [T
R e ——de—— ] 6
]
* 85.83 4
oL CEEA 84.18 84.34
| ———— A
/__-k"’" 2
A— 77.67. 77:98
76:35
74.47
70 L 0

ConvNeXt DenseNet-201 ResNet-101 ResNet-152

Figure 11: Evaluation result of optic nerve head removal experiment:
accuracy comparison across CNN architectures, highlighting the performance
drop when the optic nerve head is removed versus the baseline and FGSM
(optic disc) conditions.

The second ablation study focused on the performance of
various neural network architectures when the optic nerve head
was removed entirely from the fundus photographs. As shown
in Table 3, the accuracy of the different models in diagnosing
the symptom severity of ASD decreased drastically to 70%
when the optic nerve head was removed from the input image,
compared to the baseline (the original study without FGSM
applied). ConvNeXt, with 50 layers, showed the most signifi-
cant performance drop of 9.07, indicating a high dependency

on optic nerve head information. Simultaneously, ResNet-101
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experienced the smallest performance drop of 6.67, suggesting
greater robustness in removing this feature. Overall, all neural
network architectures experienced a significant decline in per-
formance, underscoring the importance of the optic nerve head
in medical imaging tasks, particularly in the diagnosis of ASD.

Figure 11 summarizes the performance gap between the
baseline, optic nerve head removed, and FGSM applied to
the input images. The FGSM results consistently showed a
higher performance than both the baseline and the removed
optic nerve head, suggesting that FGSM may be a more effec-
tive preprocessing method for enhancing model performance.
Among the various models, ResNet-152 demonstrated the
highest accuracy in evaluating fundus photographs for both
the baseline and FGSM, underscoring the significance of the
depth of the neural network in its performance. These insights
provide a step-ahead solution for accurately diagnosing symp-
tom severity in ASD, which is valuable for future model design
and selection in medical imaging applications.

B Conclusion

This study proposed and evaluated a novel system to diagnose
ASD symptom severity using fundus photographs, focusing on
the optic disc and the FGSM. This study applied FGSM as
a robust-oriented perturbation technique to the entire fundus
photograph and specifically to the optic disc, demonstrating
that adversarial perturbation enhanced smodel performance.
Furthermore, this study systematically the significance of the
optic disc by comparing the accuracy of ASD diagnosis follow-
ing its complete removal. The findings revealed that applying
the FGSM to the optic disc significantly improve diagnostic
accuracy across multiple neural network architectures, surpass-
ing the baseline performance. Performance noticeably declined
when the optic disc was removed entirely, underscoring the
critical role of the optic disc in medical imaging tasks. More-
over, an analysis of various models showed that the deeper
layers of feature maps were correlated with performance ac-
curacy. Overall, findings could help develop robust, effective,
and non-invasive diagnostic tools for ASD, thereby improving
early detection and intervention strategies.

Despite these promising results, this study has several
limitations. First, the dataset was limited to pediatric and ado-
lescent fundus images from South Korea. Further validation on
more diverse, multi-ethnic cohorts is necessary. Second, while
FGSM perturbations were useful as a robustness test, they rep-
resent only one type of adversarial approach; future research
should explore additional techniques such as PGD (Project-
ed Gradient Descent) or DeepFool. Finally, this study focused
exclusively on retinal imaging. Future studies integrating mul-
timodal data (e.g., genetic, behavioral, or linguistic features)
could enhance diagnostic performance. Addressing these lim-
itations will be essential to ensure the clinical applicability of
this approach.
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