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ABSTRACT: The research described in this paper is a part of the design and development of a compact and high-torque
hydraulic motor for robotic arms. Traditional motors are too bulky to be installed on robotic arms. This paper presents new
designs of hydraulic motors based on cycloidal curves. It presents the mathematically detailed generation of both epicycloidal and
hypocycloidal curves, including the standard, shortened, and modified cycloids, for cycloidal gears and corresponding pin gears.
The innovative design of hydraulic epicycloidal and hypocycloidal motors (also known as orbital motors) was described, including
designs of gears and the oil distribution system. The comparison with traditional orbital motors is discussed, and the advantages
of the new design, including compact size and high precision, are highlighted. A hydraulic motor for a subsea robotic arm was
designed as a real industrial design case. Compact size, high output torque, and smooth spinning at low speeds were needed. The
method presented was used to make an orbital motor with seven teeth on the inner gear. The designed motor was installed on a
subsea robotic arm and has been operating in a subsea environment for over a year. This design case completely proves that the

theory and design method proposed here are effective.
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B Introduction

The cycloids, the curves traced by a point on a rolling cir-
cle, have captivated mathematicians since the Renaissance.
Although their properties were hinted at in antiquity, serious
study began in the 17th century. Galileo Galilei (1599) is often
credited with naming the cycloids and attempting to calculate
the area under one arch, though his results were approximate.’
The curve’s true mathematical exploration flourished during
the "century of genius": Blaise Pascal (1658) solved key prob-
lems related to its area and centroid, while Christiaan Huygens
(1659) discovered its property, using it to design pendulum
clocks with improved accuracy. The cycloids became a bat-
tleground for calculus pioneers—Johann Bernoulli, Jakob
Bernoulli, Gottfried Leibniz, and Isaac Newton—who tack-
led the Brachistochrone problem (1697), proving the cycloids’
optimality as the "curve of fastest descent." The cycloids’ ap-
plications in physics, engineering, and mathematics cemented
their legacy as a cornerstone of classical mechanics and calculus.
The rich history reflects both the beauty of pure mathematics
and its profound utility.?

Hydraulic manipulators are popularly used in subsea ap-
plications. Due to strict limitations on size and weight, joint
actuators are required to be compact and powerful. Many
companies in this area encountered the same issue: hydraulic
low-speed-high-torque (LSHT) motor for the wrist joints of
their robotic arms were overly bulky and asymmetrical, caus-
ing operational inconvenience, visual obstruction, and limiting
their usage scenarios. The motivation of this research is to use
cycloids to find a better design of hydraulic motors for wrist
joints of robotic arms.

In cycloids’ application, the cycloidal pinion gear transmis-
sion system (Cycloidal Drive Systems)® utilizes the geometric

properties of epicycloid and hypocycloid, achieving high-preci-
sion power transmission through precise meshing mechanisms.
In the field of hydraulic motors and reducers, the cycloidal
pinion gear transmission system is widely used due to its high
efficiency and flexibility. For example, in single-stage reduc-
ers,* their output efficiency can reach over 98%, significantly
reducing energy consumption and enhancing production effi-
ciency. This paper explores the theory of cycloids and cycloidal
transmission, which would be used in the innovation of hy-
draulic motor design.

The core of cycloidal pinion transmission is the great role
of mathematical modeling of cycloidal tooth shape in gear
meshing (mesh). Characteristics of cycloidal transmission are
as follows.%7

1) Compact and Lightweight Design

The rotor (pin gear) and stator (cycloidal gear) utilize cy-
cloidal profiles. The rotor performs planetary motion via an
eccentric shaft, eliminating the need for multi-stage trans-
missions, drastically reducing size. Its compact layout allows
lighter weight compared to gear or piston motors of equivalent
power, making them ideal for space-constrained systems (e.g.,
AGVs, robotic joints ®).

2) Structural symmetry

To meet the bidirectional rotation requirements of hydrau-
lic motors, the cycloidal gear and pin gear are adopted with a
symmetrical structure. Reversing fluid flow direction enables
easy forward/reverse switching without additional mecha-
nisms. Through the precise cooperation between the eccentric
cycloidal gear and the pin gear, the stable output of the drive
is ensured. Speed is adjustable from near-zero to hundreds of
rpm and adaptable to diverse operational needs.

© 2026 Terra Science and Education

27

DOI: 10.36838/v8i2.27



ijhighschoolresearch.org

3) Low speed and high torque characteristics

The geometric properties of cycloidal gears enable
significant torque generation even at low speeds (high torque-
to-volume ratio), ideal for applications requiring heavy-load,
low-speed operation (e.g., cranes, excavator slewing mech-
anisms). Continuous meshing of cycloidal teeth minimizes
output pulsations, ensuring stable operation even at extremely
low speeds (e.g., 1-2 rpm) without "crawling" effects.

4) High Mechanical Efficiency and Durability

Multiple contact points (typically 6-8) during meshing
ensure even pressure distribution, reducing localized wear.
Rolling friction dominance further enhances energy efficiency.
Critical components (e.g., rotor, stator) use hardened steel or
composites for wear resistance. Hydraulic oil provides direct
lubrication, minimizing the frequency of maintenance needed.

Although the geometric problem of the cycloidal gear is
based on the parametric equation of a circle (positive and neg-
ative cosine trigonometric functions), its correct mathematical
derivation becomes a great difficulty and challenge due to its
dynamic coordinate transformation. In the second part of this
paper, the mathematical derivation of cycloids is provided with
details in standard, shortened, and modified versions, which
leads to a whole theory to generate cycloid curves for gear de-
sign. The third part describes the way to design a cycloidal
motor (also known as an orbital motor), followed by a design
case study of an orbital motor based on a hypocycloid. Then,
the test results of the designed motor are presented and dis-
cussed.

B Mathematical Modeling of Cycloids

Basic Cycloids:

Firstly, the mathematical cycloidal model needs to be es-
tablished. The Epicycloidal and Hypocycloidal curves are
mathematically described in the following two parts.

1) Epicycloids

As shown in Figure 1, let the big circle (shown in the quar-
ter) be the base one with radius R, and the small circle is the
rolling one with radius 7. The parametric equations (i.c., the
coordinates of a point) for the base circle can be written as:

{x:R-cosB (1)

@ 4 )

Figure 1: The geometric drawing of an epicycloidal curve. (a) The definition
of a standard epicycloidal curve. (b) An enlarged drawing to describe the
mathematical derivation.

Where 0 is the angle between the line connecting the point
to the origin and the positive x-axis, the coordinates of the
rolling circle’s center are:

x, = (R+71) " cosf
{yr = (R+7r) sind (2)

When the rolling circle rolls on the base circle by an angle
0, it rotates around its center by an angle. Because the rolling
has no slipping, the arc lengths traced on the two circles are
equal, i.e.,

R=z-r ®)
Here, z is an integer, which determines the number of pet-

als of the cycloid, which is the number of teeth in a pin gear.
Therefore, the coordinates of the reference point on the rolling

circle are:
Xe = X, + 7 sina
{y,_, =y, — - cosa “)
Where,
a=AEaF=4A(;E—4AGF=/1—(§—9) 5)

Replacing x_r,y_r, and r by Eqns (2) and (3),

xe=r(z+1)-cos€+r-sin(ﬂ—(§—0))
Ye =7(z+1)sind —7-cos(f — (; — 6))

Also, the arc BD is the same as arc DE, so
6-R=B-r @)

Finally, the expression of a standard epicycloid can be de-
rived

Xe =1(z+ 1) - cosd —r - cos[(1 + z)6] (8)
{ye =7r(z+ 1) -sinf — r-sin[(1 + 2)0]

2) Hypocycloids

As shown below, let the dashed line represent the base circle
with radius R, and the blue circle represent the rolling circle
with radius 7. The parametric equations (i.e., coordinates of a
point) for the base circle can be expressed as Eqn (1):

(a) (b)

Figure 2: The geometric drawing of a hypocycloidal curve. (a) The definition
of a standard hypocycloidal curve. (b) An enlarged drawing to describe the
mathematical derivation.

The coordinates of the rolling circle’s center are:

Xy = (R—71)-cosf
[y, =(R—r) sinf ®

When the rolling circle has rolled along the base circle by

an angle 6, it rotates around its center by an angle. Since the
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rolling has no slipping, the arc lengths traced on both circles
are equal, i.e., R and r have the same relation shown in Eqn(3),
Here, z is an integer that determines the number of lobes
(petals) of the hypocycloid, corresponding to the number of
teeth in the pin gear.
Thus, the coordinates of a reference point on the rolling cir-
cle are:

Xp = X, — 1 -siny
{yh =Y, =T cosy (10)
Where,
Y = ¢HDF = £FDE — £HDE =8 — (’—2' +6) (11)

Since the rolling circle moves on the base circle without
sliding, the lengths of the arc FE and arc BE are the same,
Eqn (12) is derived

R-0=r-B (12)

After substituting Egs (9, 11, 12) into Eqn (10), Eqn (13)

can be obtained.
[xh =7(z—1)-cosf —r-sin[f — (§+ 0)]

. n (13)
Yn =7(z—1)-sinf —r - cos[f — (;+ 0)]

This simplifies a standard hypocycloid to be expressed as:

{xh =71(z—1)-cosf +r-cos[(z—1)-0] (14)

yn =1(z—1)sind —r -sin[(z— 1) - 6]

Rewvision and Modification:

The standard cycloid has a serious flaw--it contains math-
ematically discontinuous points (non-differ-entiable points).
To create a pin gear suitable for transmission, it’s necessary to
apply a displacement (offset) to create space for the rollers on
the pin teeth to operate.

The method of displacement involves extending or shrink-
ing the curve along its normal direction by a specific distance.
Specifically, by calculating the differentials {dx/d0, dy/d6} at
a given point, the proportional components in the x and y di-
rections can be determined. The displacement is then applied
according to the ratio of these components over the total dis-
placement distance, as follows:

dx

L=1—Z_
* ax?_ ay?

de ' dé
dy
L =1- de
dx? dyz

ae " de

(15)

However, because the standard cycloid has non-differen-
tiable (discontinuous) points, it is impossible to calculate the
displacement at these locations (see Figure 3).

(a) (b)

Figure 3: Modification of standard cycloidal curves: (a) Standard epicycloidal
curves, and (b) Standard hypocycloidal curves.

Thus, the standard cycloidal curves need to be revised. By
replacing the in the subtracted term with # + r, where # is a
percentage less than 100% (i.e., using a point inside the rolling
circle instead of on its circumference), a shortened epicycloid
can be generated. In conclusion, the equations of the short-
ened epicycloids and hypocycloids can be derived as Eqs (16)
and (17)

cos[(1 + 2)6]

Xes =7(z+ 1) cos@ —n-r-
{yes =1r(z+ 1) sinf —n-r-sin[(1 +2)0] (16)
{x,,S =r(z—1)"cos@ +n-r-cos[(z—1)-0] (17)
Yps =7(z—1)-sin@ —n - r-sin[(z—1) 0]

Next, the shortened cycloid in red in the graph is scaled
equidistantly to form the green modified cycloids. This pro-
cess uses proportional scaling: for a segment on the cycloid, its
x- and y-direction components are scaled according to their

proportional ratios given by Eqns (18) and (19).

i n
Xem = Xes — L diﬁd}is—r(z+1)-c0s9—n-r-cos[(1+z)9]—l-J@
e e e e (18)
es dyes
Vem =Yes — | —=Z—=1(z+1)-sind —n-r-sin[(1 +2)0] — |- ——=Z
Lhs s
Xpm = Xps + 1 L =7r(z—1)-cosd +n-r-cos[(z—1)-0] +1- —=£
s ks ks ks
dae de de de
e e (19
Vom = Yns + 1 & =7r(z—1)-sind —n-r-sin[(z—1)- 0] + - —=
dx} . dy?. ax2_ ay?
a5 jTS‘*TS‘S

(a) (b)

Figure 4: Modification of shortened cycloidal curves: (a) Shortened
epicycloidal curves, and (b) Shortened hypocycloidal curves.

B Hydraulic Orbital Motor Design

The author used the mathematical program in Octave to
generate the cycloidal gear and pin gear’s shape, and CAD
software to make a 3D model of the motor. Before giving the
details on how to design two types of motors in the following

29

DOI: 10.36838/v8i2.27



ijhighschoolresearch.org

two parts, three concepts need to be defined: rotor, stator, and
float stator.

The rotor is the inner gear, which can spin along the central
axis.

A stator is a part that cannot spin and is normally fixed to
the housing.

The float stator is the outer gear that is not spinning but
movable to adjust the contact position with the rotor so that
mechanical transmission can be achieved.

Epicycloidal Gear and Pin Gear Design:

The epicycloidal gear is an inner gear, i.e., rotor. The design
is based on Eqn (18). The equation can be used to generate an
epicycloidal curve with four parameters: radius of rolling circle
7, integer ratio of base circle to rolling circle z (i.e., the number
of petals), shorten coefficient # , and displacement distance /.
The curve, which is shown as the green curve in Figure 5(a),
forms the contact surface of a cycloidal gear. For an epicycloi-
dal hydraulic motor, the cycloidal gear is the inner gear, while
the pin gear is the outer gear, which can be seen in Figure 5(b).

epicycloidal

60 L
80

Figure 5: Epicycloid-based orbital motor design. (a) Gear curves generation.
(b) Use the generated curve to design a motor in 3D CAD software.

The pin gear is the outer gear, i.e., the float stator, and is
formed by several pins, which are tangent to the epicycloidal
curve. Also, it is eccentric to the curve, and the eccentric offset
is the shortened radius to form the curve 0102 = 5 - r. There-
fore, there are z+1 circular teeth shown as the blue circles in
Figure 5(a) located on a circle eccentric to the origin, which is
shown as the red circle. These cylinders are just tangent to the
epicycloid. There are two methods to design the pin gear after
determining the epicycloidal curve: mathematical and engi-
neering methods.

Mathematical Method. The small red and green circles are
the center of the red circle and the green curve, respectively.

The red circle is

Xepp = (R+ 1) *cos@ —n -1
{ Yepp = (R+ 1) *siné (20)

The i-th pin on the pin gear can be expressed as

Xepei = l-cos(@) + (R+7r)-cosn/(z+1)-(i—1)) —n'r
{ Yepci =1 sin@ + (R+71)-sin(2-w/(z+1)-(i—1))

(21)
Engineering Method. In CAD software, place cylinders
equispaced with a radius of / tangent to the epicycloid from

outside, which is shown in Figure 5(b).

Hypocycloidal Gear and Pin Gear Design:

Similar to the epicycloidal gear, the hypocycloidal gear de-
sign is based on Eqn (19). However, it is the outer gear, i.e., the
float stator. The equation can be used to generate a hypocycloid
with four parameters: radius of rolling circle 7, integer ratio of
base circle to rolling circle z (i.e., the number of petals), short-
ening coefficient #, and displacement distance /. The curve,
which is shown as the green curve in Figure 6(a), forms the
contact surface of a cycloidal gear.

(a) (b)
Figure 6: Hypocycloid-based orbital motor design. (a) Gear curves
generation. (b) Use the generated curve to design a motor in 3D CAD
software.

The pin gear is formed by several pins, which are tangent to
the hypocycloid from inside. It is eccentric to the curve, and
the eccentric offset is the shortened radius to form the curve
0102 = 5 - r. Differently, the pin gear in a hypocycloid-based
orbital motor is a rotor. There are z+1 circular teeth shown as
the blue circles in Figure 6(a) located on a circle eccentric to
the origin, which is shown as the red circle. These cylinders are
just tangent to the epicycloid. There are two methods to design
a pin gear after determining the hypocycloid: mathematical
and engineering methods.

Mathematical Method. The small red and green circles are
the center of the red circle and the green curve, respectively.

The red circle is

Xnpp = (R—1) *cos@ +n-r

{ pyhp,, =(R—r)*sinf 22)
and the 7-th pin on the pin gear can be expressed as
Xnpci =L cos(@) + (R—71)-cos(2m/z- (i—1)) + n-r
{ Yhpei =1-sin@ + (R—r)sin(2-m/z- (i —1)) (23)

Engineering Method.

Similarly, in CAD software, place cylinders equispacedly
with a radius tangent to the hypocycloid from the inner side, as
shown in Figure 6(b).

Oil Distribution Design.

It can be seen from Figures 5 and 6 that a pair of rotor and
float stator of both epicycloid and hypocy-cloid-based orbital
motors creates cavities, each of which is formed by two pins,
a segment of curve on the cycloid, and a segment of curve on
the pin gear. The only difference is that the cycloidal curve
segment of the hypocycloid base orbital motor is outside, while
that of the epicycloid base orbital motor is inside.

When the rotors of both motors spin, half (if the number of
cavities is even) or nearly half (if the number of cavities is odd)
cavities tend to be enlarged, and the others are the contrary. For
example, when the rotor of the epicycloid-based orbital motor
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shown in Figure 5 spins clockwise, the cavities with blue marks
get smaller. The volume of a cavity turns to decreases when it
crosses the upper half of the vertical bisector. Conversely, the
cavity’s volume increases when it crosses the lower half of the
vertical bisector. Therefore, the oil distribution is easily imple-
mented by the following theory.

Oil Distribution Theory: After deciding the direction to
spin, the oil distribution system always fills the cavities, which
tend to be larger with high-pressure oil, and allows the ones
that tend to be smaller to output oil back to the low-pressure
tank.

(e) ®) ®)

Figure 7: The oil distribution systems of epicycloid and hypocycloid base
orbital motors. The first row is 3D models of an epicycloid-based orbital
motor, while the second row is those of a hypocy-cloid-based one. (a) and (e)
are epicycloid and hypocycloid-based orbital motors. (b) and (f) are the oil
distribution systems of both motors. (c) and (g) are the oiling plates. (d) and
(h) are the distributing plates.

The oil distribution system consists of two parts: the oiling
plate and the distributing plate. The oiling plate is the one that
contacts both gears and fills oil into the cavities. The distrib-
uting plate is the one that contacts and rotates relatively to the
oiling plate. Since there is a relative rotation between these two
plates, the cavities would either be filled with oil or output oil
according to the relative angle.

Figure 7 shows the oil distribution systems of two types of
motors. It can be found that the number of oiling holes is equal
to the number of teeth of the pin gears. The number of dis-
tributing holes is twice the number of cycloidal gears. Table 1
shows a summary of the design issues of both motors.

Table 1: Summary of the structure of epicycloid and hypocycloid-based
orbital motors.

Item Epicycloid Base Motor Hypocycloid-Based Motor
Inner Gear Cycloidal Gear Pin Gear

Outer Gear Pin Gear Cycloidal Gear

Qiling Plate Stationery to Housing Stationary to Rotor

Distributing Plate Stationary to Rotor Stationery to Housing

Number of Teeth, Inner Gear z z
Number of Teeth, Outer Gear z+1 z+1
No. of Oiling Holes z+1 z

2z 2(z+1)

No. of Distributing Holes

Comparing the oil distribution systems of both motors, it
can be seen that the epicycloid-based orbital motor is more
difficult to design. An oiling hole shall always be between two
pins. However, the pin gear of the epicycloid base orbital mo-
tor is a floating part, which slides in the housing. Therefore,
oiling holes should be sized and located to guarantee that it
is always between two pins, even when the pin gear is sliding,
which is a difficulty that does not exist in a hypocycloid-based

orbital motor.

B Design Case

After analyzing the mathematical model of two cycloidal
curves and discussing the design of oil distribution systems,
a motor can be easily designed and manufactured. Firstly, for
a subsea manipulator, a hypocycloid-based orbital motor was
determined to be designed and used. The limited size of such
manipulators requires the diameter of our motor to be less
than 110mm. After a brief sketch, a diameter of around 50mm
for our base circle is determined. The design starts with the
sketch and then iterates according to the design result. The
specifications are listed in Table 2.

Assume the base circle radius is R = 25mm. The number
of inner gear teeth is z = 7, and therefore one of the out-
er gear teeth is z+1 = 8. The radius of the rolling circle is
r = R/z = 3.57mm. The author selects the eccentric distance
r,= 2.5mm, and thus the shortening coefficient is = r/r = 0.7.
To use standard bearing rollers, /= Smm is determined. Figure
1 shows the design and machined parts.

Table 2: Specification parameters of the designed hypocycloid-based orbital

motor.

Parameter Symbol Value
Radius of base cir-

e R 25mm
Radius of rolling

circle r 3.57mm
Shorten coeffi-

cient n 07
Displace 1 5mm
Radius of roller T 5mm
No. of teeth, pin 2 7

gear

No. of teeth, cy-

cloidal gear z+1 8
Eccentric distance 0102 2.5mm
Thickness of gear b 20mm
Volume displace-

ment Vo 116ml/rev

The motor is assembled and tested on a dynamometer.
The motor is installed on the dynamometer, and the spline
shaft is connected to a magnetic adjustable load. The motor
is powered by a pressure-controlled hydraulic power unit and
controlled by a servo valve. The input pressure, spinning speed,
and flow are all monitored. The test results are achieved and
shown in Table 3. According to the design specification, the
theoretical output torque is

PV
=2%% _387.7Nm

T
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The test results show that the efficiency of the motor is

_ 330 859
3877 7

The performance of the low-speed high-torque (LSHT)
motor is good. The special structure makes each cavity change
the status of filling and discharging by z*(z+1) times, which is
equivalent to a z%(z+1):1 reducer. It can run smoothly when the
speed is 3 rpm, which is very useful for extremely low-speed
applications such as robotic joints.

Ne

(a) (b)

Figure 8: The design process. (a) the design in CAD software, (b) the
machined and assembled gears, and (c) the subsea manipulator, the wrist of
which is equipped with the hypocycloid-based orbital motor.

Table 3: Test results of the designed hypocycloid-based orbital motor.

Continuous
Torque
Instantaneous
Torque

Continuous
Pressure
Instantaneous
Pressure

Continuous Flow
Rate/
Instantaneous
Flow Rate

Displacement Maximum Speed Maximum Power

70L/min
80L/min

14MPa
21MPa

278Nm

116ml/rev 330Nm

716 rpm 26.5HP

B Discussion

Traditional orbital motors normally use an inner epicycloidal
gear, a pin gear, and a spline coupler. The innovative application
of a floating stator replacing a spline coupler makes the pre-
sented motors superior to traditional orbital motors. The main
advantages are as follows:

1.The motor length in the axial direction is dramatically de-
creased. In a traditional motor, the outer gear and housing are
the same part, which is fixed. As presented in the mathematical
part, the inner gear needs to spin eccentrically if the outer gear
is fixed. The traditional one needs to use a coupler with splines
at each end, shown in Figure 9, which requires extra length
(even more than double the length) in the axial direction.

2. Since one end of the coupler needs to spin with sliding
movement in a traditional motor, the spline cannot be too
tight, which means that the backlash is big, and the accuracy is
not high enough for precise servo control.

Coupler

Figure 9: Traditional epicycloid-based orbital motor manufactured by
Danfoss Power Solutions (US) Company.’ (a) the crossing-section view, (b)
the explosive view of coupler transmission with oil distribution plate.

On the other hand, the only drawback of the presented
epicycloid base orbital motor is slightly larger in the radial di-

rection compared to the traditional orbital motor. However, the
presented hypocycloid base orbital motor can also help reduce
that size. The orbital motor designed and presented in this pa-
per has been used in the subsea manipulator shown in Figure
8(c) due to its compact size and large torque output. The sub-
sea manipulator has been working at a depth of 4500 meters
shown in Figure 10.

Figure 10: Operation at 4500msw.

B Conclusion

This paper presents mathematically detailed generation
of both epicycloidal and hypocycloidal curves, including the
standard, shortened, and modified cycloids, for designing cy-
cloidal gears and corresponding pin gears. It provides not
only the mathematical formulas but also the process to design
gears. Moreover, the innovative design of hydraulic epicycloid
and hypocycloid-based motors is described. Especially, the oil
distribution system is analyzed and compared to traditional
orbital motors. The critical contribution in this paper is mo-
tor design with a hypocycloid, which is rarely published. The
advantages of the presented design are obvious. It can achieve a
more compact size and more precise transmission.

A real industrial design case was also presented in this pa-
per. A hydraulic motor was required for a subsea robotic arm.
Compact size, high output torque, and smooth spinning at low
speeds were needed. The method presented in this paper was
used to make a hypocycloid base orbital motor with seven teeth
on the inner gear, 2.5mm eccentric distance, and a 20mm gear
thickness. The maximum output torque is reached at a pressure
of 21 MPa. When the machining precision was guaranteed, it
could smoothly spin at the speed of 1.5rpm. The designed mo-
tor was installed on a subsea robotic arm and has been working
in a subsea environment for more than a year. This design case
completely proves that the theory and design method proposed
here are effective.

Innovatively combining the two cycloidal tooth profiles
mentioned above would form a novel dual-cycloidal system
and will be the future research. This design will integrate
both hypocycloid and epicycloid transmission principles. It is
believed that a more compact size and larger torque will be
achieved from the new method.
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