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ABSTRACT: Human-centered Al has entered the field of queries for PAM prediction to change mechanical maintenance
from a reactive-based approach to a more failure-predictive and intervention-oriented method. The study extends the state of the
art by proposing an edge-deployed, hybrid, explainable system for PAM to counteract inefliciencies and unplanned downtimes
that commonly occur in traditional maintenance. We proposed a five-layer architecture with sensor fusion, ensemble ML models
(Random Forest, XGBoost), neuromorphic spiking and liquid neural networks,and GPT-3.5-level fine-tuned LLMs for diagnostic
explanations. Realistic sensor noises were simulated by the synthetic dataset (~15,000 samples). The system is benchmarked on
edge platforms (Arduino Nano 33 BLE Sense, Raspberry Pi 4, Intel Loihi) and further fine-tuned with Bayesian hyperparameter
optimization techniques based on technician feedback. In total, it reduced unplanned downtime by 72% and achieved an accuracy
of over 97% for the hydraulic presses, CNC mills, and robotic arms. They also showed inference latencies below 5 ms, consuming
less than 50 mW of power. The technicians evaluated the clarity, actionability, and trustworthiness of the LLM explanations,
assigning scores of 4.6/5, 4.4/5, and 4.2/5, respectively. The human-in-loop adjustments reduced false negatives by 4%. In brief,
prescriptive real-time maintenance can be carried out using edge Al, with energy efficiency and explainable outputs, via a hybrid
framework, ensuring both technical acceptability and strong operator acceptance in high-stakes environments.

KEYWORDS: Predictive Maintenance (PdM), Edge AI, Explainable Al, Spiking Neural Networks, Large Language Model,
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B Introduction at the edge (such as Avangrid's assistant autopilot) can trigger

Integration of Artificial Intelligence in predictive mainte-
nance systems constitutes a breakthrough in mechathesight and
functionality.! In the mechanical apparatus industry, Industry
4.0 has showcased that there are weaknesses in conventional
maintenance approaches, and unforeseen equipment break-
downs have cost manufacturers globally $1.4 trillion annually.?
Such situations of dormancy not only inflate operational costs
but also compromise security and supply chain integrity. On
this front, Al-driven predictive maintenance (PdM) has be-
come an advanced process that predicts equipment breakdowns
and allows data-driven scheduling of maintenance operations.

Modern predictive maintenance (PdM) systems leverage
high-resolution, multi-modal sensor data, including vibra-
tion, temperature, current consumption, and ultrasonic sounds,
supplemented by advanced artificial intelligence architec-
tures. These architectures include ensemble methods, such
as Gradient Boosting and Random Forests, and deep learn-
ing networks.* LLMs improve PdM systems by analyzing
unstructured data—i.e., maintenance records and operator
comments—thus making predictive analytics that are accurate
and, more recently, large language models (LLMs) used to con-
textualize and explain outlier patterns.*’

Edge Al usage is all the more common in time-sensitive in-
dustrial environments to enable real-time analytics on-site and
maintain privacy by reducing reliance on cloud connectivity.®
For power grids, rail networks, and factories, Al agents based

maintenance processes independently and at high speeds.

Despite this, the development of Al-based predictive main-
tenance (PdM) still faces numerous challenges. These include
heterogeneous sensor environments, data integrity concerns,
regulatory compliance, and resistance from technicians due to
differences in workforce capabilities.” Strategic approaches in-
clude the use of robust data pipelines, flexible Al architectures,
and co-design with domain experts to improve acceptability
and credibility.**

This research positions itself at the nexus of these ad-
vancements. By combining sensor fusion, machine learning
ensembles, LLM-driven reasoning, and edge Al deployment,
we seek to advance PdM from reactive to prescriptive main-
tenance. We contextualize our framework using recent
industrial benchmarks, compare Al architectures, including
TranDRL-style transformers and LLM augmented systems,

and validate using real-world inspired datasets.

B Advancements, ROI, and Challenges

1. Traditional maintenance methods, in particular, reactive
and preventive maintenance, are increasingly becoming unsus-
tainable because they have high ownership costs. Combinations
of frequent inspections and deferred reactive repairs all worsen
inefficiencies, leading to more than 20% downtime compared
to smart systems. These approaches show weaknesses in their
ability to monitor intra-system changes in real-time, often re-
sulting in sub-optimal decision-making and high costs.
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2. The emergence of artificial intelligence-aided predic-
tive maintenance (PdM), enabled by heterogeneous sensor
arrays and machine learning tools, has delivered high return
on investment (ROI). A global survey in 2025 reported that
manufacturing businesses deploying Al-enabled PdM systems
saw the frequency of unplanned downtime reduced by 37%,
expenditure on maintenance dropped by 28%, and equipment
lifespan increased by 22%, with investment recovery achieved
in a maximum of 14 months.® Other industrial evaluations
record improvements in predictive accuracy of 20% to 30%,
along with downtimes reduced by as much as 45%, thus her-
alding the revolutionary impact of intelligent systems.

3. The importance of Edge Al has significantly grown be-
cause of its ability to process information at the edge, which
reduces latency and compliance risks. Modern frameworks
take advantage of power-efficient architectures like Liquid
Neural Networks to support continuous inference over diverse
operating conditions while keeping communication with cen-
tral servers within reasonable bounds.

4. Explainable Al (XAI) and large language models (LLMs)
are now critical for PAM systems. XAl methodologies provide
transparency, while LL.Ms enable natural-language explana-
tions and interactive diagnostics, addressing technician trust
issues and aiding domain adoption. For instance, an LLM-
based compressor-monitoring system reported 92.3% recall
and operational cost reductions of 18% in 2025 trials.®

5. Hybrid architectures that bring together sensor fusion,
LLM-based explanation,and edge deployment are being tested
in critical infrastructure spaces. Companies like Duke Energy
and Rhizome use artificial intelligence to forecast equipment
failure and climate-related stressors, leading to improvements
in grid stability and a decrease in outages of up to 72%.% These
platforms merge computer vision, 5G data, and prescriptive
guidance from LLMs to act as smart decision frameworks to
optimize operator interventions.

6. The accelerated pace of innovation notwithstanding,
some of the following issues remain to be addressed: incon-
sistencies in the quality of data, integration complexities, a
talent vacuum, and large up-front investments. Thus, changes
are preferred for implementation as an organizational change
process, supported by change management and trial runs in
controlled environments to nurture confidence and guarantee
return on investment.

B Methodology

1. Framework Overview:

This paper proposes a five-layer predictive maintenance
(PdM) architecture that is edge computing-compatible, high-
lighting the importance of real-time capability, interpretability,
and power efficiency. The architecture consists of five different
layers: (1) Multi-sensor Data Acquisition, (2) Feature En-
gineering, (3) Hybrid Modeling, (4) Edge Al Deployment,
and (5) LLM-Guided Interpretability. Each of these layers
has been carefully optimized to support instant predictions,
provide actionable information, and detect failures without
exhausting energy, but also remain explainable to technicians.
Liquid Neural Networks were chosen for their advantages in

temporal continuity and robustness to modulation. Unlike tra-
ditional cloud-based PdM systems that are incompatible with
edge deployments, this architecture is compatible with em-
bedded device implementations leveraging neuromorphic and
quantized models backed by post-hoc large language models
(LLMs) fine-tuned for maintenance-specific tasks.

2. Data Collection and Feature Engineering:

To simulate realistic environments, a synthetic dataset of
more than 15,000 multi-channel time-series samples was pre-
pared, covering three types of machinery: hydraulic presses,
CNC mills, and robotic arms. All three types were instrument-
ed with sensors measuring vibrations, temperature, pressure,
electrical current, and acoustic emissions. Sensor drift, dropped
data packets, and variability inherent in realistic cases were
introduced to purposefully corrupt the dataset, including con-
tamination with both Poisson and Gaussian noise. Z-score
normalization served to standardize, and a sliding window
segmenting technique (5 seconds, 50% overlap) served to pre-
serve temporal correlation. Extracted features were statistical
(root mean square, kurtosis), spectral (fast Fourier transform
peaks, spectral entropy), and time domain (peak intervals, slope
variance). The synthetic dataset is composed of over 15,000
multi-channel time-series samples generated from statistical
simulation models based on genuine vibration and tempera-
ture sensor profiles from publicly available industrial datasets.
Statistical distributions were tested against known baselines
from the real world to ensure variability that is realistic.

3. Hybrid Model Architecture:

Random Forest and XGBoost were considered more apt be-
cause they are the most robust on smaller datasets and provide
an excellent baseline. They included Spiking Neural Networks
and Liquid Neural Networks for their efficient capture of
temporal dynamics, thus facilitating low-power edge infer-
ence suitable for monitoring. A stacked ensemble approach
was adopted, utilizing Random Forest (RF), XGBoost, Spik-
ing Neural Networks (SNNs), and Liquid Neural Networks
(LNNs). RF and XGBoost served as base models. SNNs were
chosen due to their potential to support real-time spike en-
coding and low energy consumption, which are key assets in
neuromorphic systems like Intel Loihi. LNNs, based on dy-
namics relevant to differential equations, offered advantages of
temporal continuity and robustness to noisy data. Training of
models was conducted via stratified 80/20 splits, and they were
tested using cross-validation methods. Hyperparameter search
was carried out via Bayesian search over 50 iterations. Mod-
els were implemented in PyTorch, TensorFlow, and Nengo to
support cross-hardware comparison. Bayesian hyperparameter
optimization (a statistical method for finding the best model
settings based on probability) was applied based on technician
feedback.

4. Edge Deployment Infrastructure:

The deployment layer was tested on Arduino Nano 33 BLE
Sense, Raspberry Pi 4, and Loihi-based edge devices. RF/
XGBoost models were quantized via ONNX; SNN and LNN
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were optimized using runtime compilation. On average, SNNs
executed in 5ms with <0.05W consumption, while LNNs
achieved 3ms latency and sub-50mW draw. This confirmed
the feasibility of condition monitoring. Model inferences were
triggered event-wise, reducing computational load and extend-
ing battery life. Edge benchmarking was performed using the
Edge Impulse and Intel NxSDK toolkits. Our results aligned
closely with benchmarked results in the Results section, con-

firming deployment viability.

5. LLM-Guided Explainability and Human-in-Loop Feed-
back:

To ensure transparency and user comprehension, we in-
corporated a fine-tuned GPT-3.5-level LLM trained on
structured maintenance logs, manuals, and failure reports.
Post-prediction summaries (e.g., vibration spike at 5Hz) were
transformed into technician-friendly diagnostics. Evaluated by
30 domain experts on a 5-point Likert scale, the results about
explainability came up with clarity (4.6), actionability (4.4),
and trust (4.2). Cohen's kappa of 0.78 showed good inter-rater
agreement. Importantly, technician-guided adjustments based
on LLM outputs reduced FNR by 4%, validating the utility of

natural-language interaction.

6. Integration of Findings:

All elements were tightly interwoven and assessed based on
criteria defined in the Results section. Downtime reduction of
75% or more, accuracy rates close to 97% or more for models,
and edge efficiency preservation below 50mW are properties
that show a direct correspondence with previously identified
hybrid modeling methods and edge deployment approaches.
In addition, auxiliary ablation experiments support unique
properties—the spectral properties and features associat-
ed with the explainability of large language models (LLMs).
Thus, our approach also doubles as both a technical basis and a
reproducible template for the scalable implementation of pre-
dictive maintenance based on Al-driven mechanisms.

B Results

1. Impacts on operations and downtime minimization:

The system for predictive maintenance was able to effect
profitable operational changes across all sorts of equipment
tested: hydraulic presses, CNC mills, and robotic arms. Re-
al-time multi-sensor data integrated with hybrid Al models
accounted for a 72% reduction in unplanned downtime on
average. Downtime was quantified by comparing baseline
traditional maintenance schedules against Al-driven condi-
tion-based interventions over a simulated 6-month period.
Table 1 provides a summary of the comparative downtime
metrics under traditional maintenance and Al-predictive
maintenance, thus highlighting the major improvements no-
ticed across respective types of machinery.

Table 1: Comparison of Downtime Under Baseline vs. AI-Driven Predictive
Maintenance Conditions. Al-based PdM has reduced the downtime for each
machine by over 70%, which makes for significant reliability and operational

availability improvements.

Equipment Baseline Downtime Al-Driven Downtime Downtime Reduction
Type (hours) (hours) (%)
Hydraulic Press 40 11 72.5
CNC Mill 60 17 .7
Robotic Arm 30 8 733

Operating procedures have also been refined to yield sub-
stantial savings in costs associated with reduced incidences of
inactivity, faster fixation of equipment breakdowns, and more
efficient maintenance methods. For all machinery categories,
the mean downtime per particular failure has dropped from
43.3 hours to 12 hours, which yields about $85,000 per critical

failure savings.

2. Model Performance Metrics:

The hybrid architecture utilizing Random Forest (RF), XG-
Boost, Spiking Neural Networks (SNNs), and Liquid Neural
Networks (LNNs) was evaluated on a 15,000-instance dataset
with 80/20 training/testing splits. Table 2 presents the classifi-
cation performance averaged over 5-fold cross-validation runs:
Table 2: Classification Performance of Hybrid Al Models (5-Fold CV
Average). Neuromorphic models (SNN and LNN) achieved the highest

accuracy and ROC-AUC values, thereby surpassing the traditional ones in
precision and recall.

Model Accuracy Precision | Recall (%) F1-Score | ROC-AUC
(%) (%) (%)
XGBoost 915 90.3 90.9 90.6 0.936
Random Forest (RF) 94.8 93.5 95.0 942 0.965
Liquid Neural Nets 96.7 95.8 971 96.4 0.976
Spiking Neural Nets 97.3 96.9 97.6 97.2 0.982

Table 2 comprises the metrics of accuracy, precision, recall,
F1-score, and ROC-AUC for each model, and henceforth
demonstrates that neuromorphic neural networks outperform
those of classical nature. Neuromorphic models (SNN and
LNN) outperformed classical machine learning baselines by
approximately 2-5% in key metrics, confirming their robust-
ness in noisy, temporally complex industrial data.

3. Edge Inference Delay and Energy Efficiency:

Delay Models were further deployed on widely used edge
computing infrastructures, later benchmarked for inference
latency and energy efficiency, considering their suitability for
real-time operations and execution efficiency. Table 3 com-
pares and contrasts the latency and power consumption of the
hybrid models on various edge devices, thereby illustrating the
efficiency gain on a real-time deployment level afforded by the
neuromorphic model.
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Table 3: Inference Latency and Power Efficiency on Edge Devices. Spiking
and liquid neural networks preserve ultra-low power consumption values
(<50mW) and latency below 5ms, rendering continuous low-latency real-time
monitoring via embedded systems possible.

Model Power Consumption Latency (ms)
(mw)
Spiking Neural Nets 0.045 5
Random Forest (quantized) 210 125
XGBoost (quantized) 185 100
Liquid Neural Nets 48 3

The neuromorphic architectures recorded sub-5ms in-
ference latencies and consumed less than 50mW of power.
This was a hint toward the implementation of continuous,
always-on edge monitoring. Consequently, they can power
low-consumption or energy-harvesting loT deployments at
negligible operational expenditures.

4. Ablation Analysis: How Different Modules and Features
Function:

To assess feature importance and architectural contributions,
ablation experiments were conducted by selectively removing
feature groups and modules:

*  Removal of spectral features, such as FF'T peaks and

spectral entropy, caused a 4.2% average drop in accuracy.
At the same time, the alteration caused a 3.8% increase
in false negatives, thus highlighting their substantial
role in the initial detection of anomalies.

¢ Its removal dropped technician understanding scores
by 18% on a 5-point Likert scale, while also increas-
ing false negatives by 4.5%. This result highlights the
importance of natural language interpretability in
ensuring maintenance decisions are made based on in-
formed judgment.

*  Disabling neuromorphic model components (SNN,
LNN) and relying solely on classical models reduced
predictive accuracy by 5%, underscoring the advantage
of temporal dynamic modeling.

5. Human in the Loop Evaluation:

A group of 30 experienced maintenance technicians tested
the performance of a highly calibrated Large Language Model
specifically designed to explain diagnostic methods. The main
metrics based on their answers include:

Table 4: Human in the Loop Evaluation. The technicians gave high scores
to clarity, trust, and actionability, in turn confirming the success of LLM
explainability in actual maintenance processes.

Metric Score (out of 5)

Trust 4.2

Clarity 4.6
Actionability 4.4

Table 4 presents feedback from technicians on the outputs
produced by the LLM in terms of real-world maintenance
considerations-whether it's trustworthy, clear, and actionable.
The experts exhibited a rise in confidence level for their main-
tenance suggestions, coupled with a significant improvement
in responsiveness to failure alerts. The cooperation among hu-

mans and machines brought about a 4% reduction in cases of
false negatives, demonstrating the potential of explainable Al
for high-stakes industries.

6. Scalability and Deployment Readiness:

Evaluations performed on multiple edge platforms showed
the scalability of the design. Event-driven inference methods
and model quantization went on to shelter the computing
overhead by 35%; this made them eligible for deployment on
a large industrial scale. Besides, the modular approach allowed
any extra sensor modalities or new Al models to be integrated
via over-the-air updates, with latency and power consumption
specifications met at all times.

B Discussion & Conclusion

The adoption of Al-powered predictive maintenance (PdM)
systems—especially those designed for edge deployment—is a
premier breakthrough in mechanical system monitoring. The
results of our model comparisons confirm that the integration
of neuromorphic networks (LNNs and SNNs) with explain-
able Al (XAI) interfaces far exceeds traditional predictive
approaches on every metric that was evaluated: accuracy, la-
tency, interpretability, and power efficiency. Practical scalability
and implementability were demonstrated through prolonged
operation on embedded hardware like the Raspberry Pi 4 and
Intel Loihi. To be more specific, the sub-5ms inference laten-
cy and <50mW power consumption of neuromorphic models
demonstrate their viability in 24/7 condition monitoring use
cases, key for industries reliant on non-stop workflows like
aerospace, energy, and automotive manufacturing.

Moreover, the language model-enabled human-machine
interface was also shown to be a strong enabler of operator
reliance, clarity, and implementability. Its capacity to produce
accurate, context-dependent explanations has played a vital
role in eradicating false negatives and accelerating subsequent
steps. The fact that ablation analysis was incorporated also
validated the value of spectral features and natural-language
insights—two factors that play direct roles in model accura-
cy and technician usability. Importantly, ensembles of hybrid
models such as SNN + RF or LNN + XGBoost offered com-
pelling options when real-time requirements changed across
environments. Such modular flexibility guarantees the system's
scalability to other potential future applications, for example,
remote diagnostics for power grids or wearable monitoring
for industrial safety equipment. These findings collectively
emphasize that effective PAM systems cannot only correctly
forecast anomalies but also support human understanding, en-
ergy efficiency, and deployment feasibility. This paper provides
a compelling case for investment in these kinds of integrative
approaches to migrate from reactive maintenance structures.

This study put forth a cutting-edge PAM architecture that
integrates multi-sensor fusion, new hybrid machine learning
models, edge deployment optimization, and explainable diag-
nostics via fine-tuned LLMs in a holistic manner. The results,
with an accuracy of over 97% and an average 72% downtime
reduction, exhibit a breakthrough improvement in predictive
maintenance performance. By demonstrating how neuromor-
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phic inference, quantized deployment, and technician-aligned
explainability can be used together in real-time, we show
the feasibility of Al deployment at the edge in high-stakes
industrial environments. Next steps can involve scaling the
architecture to other industrial verticals, adding new sensor
modalities, and automating feedback loops between LLMs
and technicians to distill prediction logic dynamically. Lastly,
this blueprint is a plan for the PAM systems of tomorrow that
will be accurate, power-efficient, interpretable, and produc-
tion-ready.

Although the proposed system has been able to achieve high
accuracy and a drastic reduction of downtime, further com-
putational resources may be needed when scaled to extremely
large industrial facilities. Neuromorphic devices, being ener-
gy-efficient, have somewhat limited commercial availability as
well as a higher initial cost. It all depends on how well tech-
nicians train the interpretation of LLM outputs. Moreover,
synthetic datasets may not capture all extraordinary anomalies
found in the real world.

Future work entails large-scale deployment trials, the
benchmarking of more neuromorphic hardware, integration
of new sensor modalities (thermal imaging and ultrasonic
mapping), and the realization of automated feedback loops
between LLM outputs and technician responses. This study
proposes a deployable, Al-driven PAM methodology merging
neuromorphic models with LLM-aided explainability. Three
long-standing challenges are addressed: (1) enabling accurate
deployment on the edge, (2) earning technician trust through
interpretable outputs, and (3) putting in place hybrid models
that sit halfway between classical and neuromorphic Al The
contributions nurture both academic and practical disciplines

of PAM in an industrial setting.
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