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ABSTRACT: Human-centered AI has entered the field of queries for PdM prediction to change mechanical maintenance 
from a reactive-based approach to a more failure-predictive and intervention-oriented method. The study extends the state of the 
art by proposing an edge-deployed, hybrid, explainable system for PdM to counteract inefficiencies and unplanned downtimes 
that commonly occur in traditional maintenance. We proposed a five-layer architecture with sensor fusion, ensemble ML models 
(Random Forest, XGBoost), neuromorphic spiking and liquid neural networks, and GPT-3.5-level fine-tuned LLMs for diagnostic 
explanations. Realistic sensor noises were simulated by the synthetic dataset (~15,000 samples). The system is benchmarked on 
edge platforms (Arduino Nano 33 BLE Sense, Raspberry Pi 4, Intel Loihi) and further fine-tuned with Bayesian hyperparameter 
optimization techniques based on technician feedback. In total, it reduced unplanned downtime by 72% and achieved an accuracy 
of over 97% for the hydraulic presses, CNC mills, and robotic arms. They also showed inference latencies below 5 ms, consuming 
less than 50 mW of power. The technicians evaluated the clarity, actionability, and trustworthiness of the LLM explanations, 
assigning scores of 4.6/5, 4.4/5, and 4.2/5, respectively. The human-in-loop adjustments reduced false negatives by 4%. In brief, 
prescriptive real-time maintenance can be carried out using edge AI, with energy efficiency and explainable outputs, via a hybrid 
framework, ensuring both technical acceptability and strong operator acceptance in high-stakes environments.  

KEYWORDS: Predictive Maintenance (PdM), Edge AI, Explainable AI, Spiking Neural Networks, Large Language Model, 
Sensor Fusion, Human-in-the-Loop, Neuromorphic Computing. 

�   Introduction
Integration of Artificial Intelligence in predictive mainte-

nance systems constitutes a breakthrough in mechathesight and 
functionality.1 In the mechanical apparatus industry, Industry 
4.0 has showcased that there are weaknesses in conventional 
maintenance approaches, and unforeseen equipment break-
downs have cost manufacturers globally $1.4 trillion annually.2 
Such situations of dormancy not only inflate operational costs 
but also compromise security and supply chain integrity. On 
this front, AI-driven predictive maintenance (PdM) has be-
come an advanced process that predicts equipment breakdowns 
and allows data-driven scheduling of maintenance operations.

Modern predictive maintenance (PdM) systems leverage 
high-resolution, multi-modal sensor data, including vibra-
tion, temperature, current consumption, and ultrasonic sounds, 
supplemented by advanced artificial intelligence architec-
tures. These architectures include ensemble methods, such 
as Gradient Boosting and Random Forests, and deep learn-
ing networks.3 LLMs improve PdM systems by analyzing 
unstructured data—i.e., maintenance records and operator 
comments—thus making predictive analytics that are accurate 
and, more recently, large language models (LLMs) used to con-
textualize and explain outlier patterns.4,5

Edge AI usage is all the more common in time-sensitive in-
dustrial environments to enable real-time analytics on-site and 
maintain privacy by reducing reliance on cloud connectivity.6 
For power grids, rail networks, and factories, AI agents based 

at the edge (such as Avangrid's assistant autopilot) can trigger 
maintenance processes independently and at high speeds.

Despite this, the development of AI-based predictive main-
tenance (PdM) still faces numerous challenges. These include 
heterogeneous sensor environments, data integrity concerns, 
regulatory compliance, and resistance from technicians due to 
differences in workforce capabilities.7 Strategic approaches in-
clude the use of robust data pipelines, flexible AI architectures, 
and co-design with domain experts to improve acceptability 
and credibility.3,8

This research positions itself at the nexus of these ad-
vancements. By combining sensor fusion, machine learning 
ensembles, LLM-driven reasoning, and edge AI deployment, 
we seek to advance PdM from reactive to prescriptive main-
tenance. We contextualize our framework using recent 
industrial benchmarks, compare AI architectures, including 
TranDRL-style transformers and LLM augmented systems, 
and validate using real-world inspired datasets.

�   Advancements, ROI, and Challenges
1. Traditional maintenance methods, in particular, reactive 

and preventive maintenance, are increasingly becoming unsus-
tainable because they have high ownership costs. Combinations 
of frequent inspections and deferred reactive repairs all worsen 
inefficiencies, leading to more than 20% downtime compared 
to smart systems. These approaches show weaknesses in their 
ability to monitor intra-system changes in real-time, often re-
sulting in sub-optimal decision-making and high costs.
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2. The emergence of artificial intelligence-aided predic-
tive maintenance (PdM), enabled by heterogeneous sensor 
arrays and machine learning tools, has delivered high return 
on investment (ROI). A global survey in 2025 reported that 
manufacturing businesses deploying AI-enabled PdM systems 
saw the frequency of unplanned downtime reduced by 37%, 
expenditure on maintenance dropped by 28%, and equipment 
lifespan increased by 22%, with investment recovery achieved 
in a maximum of 14 months.3 Other industrial evaluations 
record improvements in predictive accuracy of 20% to 30%, 
along with downtimes reduced by as much as 45%, thus her-
alding the revolutionary impact of intelligent systems.

3. The importance of Edge AI has significantly grown be-
cause of its ability to process information at the edge, which 
reduces latency and compliance risks. Modern frameworks 
take advantage of power-efficient architectures like Liquid 
Neural Networks to support continuous inference over diverse 
operating conditions while keeping communication with cen-
tral servers within reasonable bounds.

4. Explainable AI (XAI) and large language models (LLMs) 
are now critical for PdM systems. XAI methodologies provide 
transparency, while LLMs enable natural-language explana-
tions and interactive diagnostics, addressing technician trust 
issues and aiding domain adoption. For instance, an LLM-
based compressor-monitoring system reported 92.3% recall 
and operational cost reductions of 18% in 2025 trials.6

5. Hybrid architectures that bring together sensor fusion, 
LLM-based explanation, and edge deployment are being tested 
in critical infrastructure spaces. Companies like Duke Energy 
and Rhizome use artificial intelligence to forecast equipment 
failure and climate-related stressors, leading to improvements 
in grid stability and a decrease in outages of up to 72%.8 These 
platforms merge computer vision, 5G data, and prescriptive 
guidance from LLMs to act as smart decision frameworks to 
optimize operator interventions.

6. The accelerated pace of innovation notwithstanding, 
some of the following issues remain to be addressed: incon-
sistencies in the quality of data, integration complexities, a 
talent vacuum, and large up-front investments. Thus, changes 
are preferred for implementation as an organizational change 
process, supported by change management and trial runs in 
controlled environments to nurture confidence and guarantee 
return on investment.

�   Methodology
1. Framework Overview:
This paper proposes a five-layer predictive maintenance 

(PdM) architecture that is edge computing-compatible, high-
lighting the importance of real-time capability, interpretability, 
and power efficiency. The architecture consists of five different 
layers: (1) Multi-sensor Data Acquisition, (2) Feature En-
gineering, (3) Hybrid Modeling, (4) Edge AI Deployment, 
and (5) LLM-Guided Interpretability. Each of these layers 
has been carefully optimized to support instant predictions, 
provide actionable information, and detect failures without 
exhausting energy, but also remain explainable to technicians. 
Liquid Neural Networks were chosen for their advantages in 

temporal continuity and robustness to modulation. Unlike tra-
ditional cloud-based PdM systems that are incompatible with 
edge deployments, this architecture is compatible with em-
bedded device implementations leveraging neuromorphic and 
quantized models backed by post-hoc large language models 
(LLMs) fine-tuned for maintenance-specific tasks.

2. Data Collection and Feature Engineering:
To simulate realistic environments, a synthetic dataset of 

more than 15,000 multi-channel time-series samples was pre-
pared, covering three types of machinery: hydraulic presses, 
CNC mills, and robotic arms. All three types were instrument-
ed with sensors measuring vibrations, temperature, pressure, 
electrical current, and acoustic emissions. Sensor drift, dropped 
data packets, and variability inherent in realistic cases were 
introduced to purposefully corrupt the dataset, including con-
tamination with both Poisson and Gaussian noise. Z-score 
normalization served to standardize, and a sliding window 
segmenting technique (5 seconds, 50% overlap) served to pre-
serve temporal correlation. Extracted features were statistical 
(root mean square, kurtosis), spectral (fast Fourier transform 
peaks, spectral entropy), and time domain (peak intervals, slope 
variance). The synthetic dataset is composed of over 15,000 
multi-channel time-series samples generated from statistical 
simulation models based on genuine vibration and tempera-
ture sensor profiles from publicly available industrial datasets. 
Statistical distributions were tested against known baselines 
from the real world to ensure variability that is realistic.

3. Hybrid Model Architecture:
Random Forest and XGBoost were considered more apt be-

cause they are the most robust on smaller datasets and provide 
an excellent baseline. They included Spiking Neural Networks 
and Liquid Neural Networks for their efficient capture of 
temporal dynamics, thus facilitating low-power edge infer-
ence suitable for monitoring. A stacked ensemble approach 
was adopted, utilizing Random Forest (RF), XGBoost, Spik-
ing Neural Networks (SNNs), and Liquid Neural Networks 
(LNNs). RF and XGBoost served as base models. SNNs were 
chosen due to their potential to support real-time spike en-
coding and low energy consumption, which are key assets in 
neuromorphic systems like Intel Loihi. LNNs, based on dy-
namics relevant to differential equations, offered advantages of 
temporal continuity and robustness to noisy data. Training of 
models was conducted via stratified 80/20 splits, and they were 
tested using cross-validation methods. Hyperparameter search 
was carried out via Bayesian search over 50 iterations. Mod-
els were implemented in PyTorch, TensorFlow, and Nengo to 
support cross-hardware comparison. Bayesian hyperparameter 
optimization (a statistical method for finding the best model 
settings based on probability) was applied based on technician 
feedback.

4. Edge Deployment Infrastructure:
The deployment layer was tested on Arduino Nano 33 BLE 

Sense, Raspberry Pi 4, and Loihi-based edge devices. RF/
XGBoost models were quantized via ONNX; SNN and LNN 
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were optimized using runtime compilation. On average, SNNs 
executed in 5ms with <0.05W consumption, while LNNs 
achieved 3ms latency and sub-50mW draw. This confirmed 
the feasibility of condition monitoring. Model inferences were 
triggered event-wise, reducing computational load and extend-
ing battery life. Edge benchmarking was performed using the 
Edge Impulse and Intel NxSDK toolkits. Our results aligned 
closely with benchmarked results in the Results section, con-
firming deployment viability.

5. LLM-Guided Explainability and Human-in-Loop Feed-
back:

To ensure transparency and user comprehension, we in-
corporated a fine-tuned GPT-3.5-level LLM trained on 
structured maintenance logs, manuals, and failure reports. 
Post-prediction summaries (e.g., vibration spike at 5Hz) were 
transformed into technician-friendly diagnostics. Evaluated by 
30 domain experts on a 5-point Likert scale, the results about 
explainability came up with clarity (4.6), actionability (4.4), 
and trust (4.2). Cohen's kappa of 0.78 showed good inter-rater 
agreement. Importantly, technician-guided adjustments based 
on LLM outputs reduced FNR by 4%, validating the utility of 
natural-language interaction.

6. Integration of Findings:
All elements were tightly interwoven and assessed based on 

criteria defined in the Results section. Downtime reduction of 
75% or more, accuracy rates close to 97% or more for models, 
and edge efficiency preservation below 50mW are properties 
that show a direct correspondence with previously identified 
hybrid modeling methods and edge deployment approaches. 
In addition, auxiliary ablation experiments support unique 
properties—the spectral properties and features associat-
ed with the explainability of large language models (LLMs). 
Thus, our approach also doubles as both a technical basis and a 
reproducible template for the scalable implementation of pre-
dictive maintenance based on AI-driven mechanisms.

�   Results 
1. Impacts on operations and downtime minimization:
The system for predictive maintenance was able to effect 

profitable operational changes across all sorts of equipment 
tested: hydraulic presses, CNC mills, and robotic arms. Re-
al-time multi-sensor data integrated with hybrid AI models 
accounted for a 72% reduction in unplanned downtime on 
average. Downtime was quantified by comparing baseline 
traditional maintenance schedules against AI-driven condi-
tion-based interventions over a simulated 6-month period. 
Table 1 provides a summary of the comparative downtime 
metrics under traditional maintenance and AI-predictive 
maintenance, thus highlighting the major improvements no-
ticed across respective types of machinery.

Operating procedures have also been refined to yield sub-
stantial savings in costs associated with reduced incidences of 
inactivity, faster fixation of equipment breakdowns, and more 
efficient maintenance methods. For all machinery categories, 
the mean downtime per particular failure has dropped from 
43.3 hours to 12 hours, which yields about $85,000 per critical 
failure savings.

2. Model Performance Metrics:
The hybrid architecture utilizing Random Forest (RF), XG-

Boost, Spiking Neural Networks (SNNs), and Liquid Neural 
Networks (LNNs) was evaluated on a 15,000-instance dataset 
with 80/20 training/testing splits. Table 2 presents the classifi-
cation performance averaged over 5-fold cross-validation runs:

Table 2 comprises the metrics of accuracy, precision, recall, 
F1-score, and ROC-AUC for each model, and henceforth 
demonstrates that neuromorphic neural networks outperform 
those of classical nature. Neuromorphic models (SNN and 
LNN) outperformed classical machine learning baselines by 
approximately 2-5% in key metrics, confirming their robust-
ness in noisy, temporally complex industrial data.

3. Edge Inference Delay and Energy Efficiency:
Delay Models were further deployed on widely used edge 

computing infrastructures, later benchmarked for inference 
latency and energy efficiency, considering their suitability for 
real-time operations and execution efficiency. Table 3 com-
pares and contrasts the latency and power consumption of the 
hybrid models on various edge devices, thereby illustrating the 
efficiency gain on a real-time deployment level afforded by the 
neuromorphic model.

Table 1: Comparison of Downtime Under Baseline vs. AI-Driven Predictive 
Maintenance Conditions. AI-based PdM has reduced the downtime for each 
machine by over 70%, which makes for significant reliability and operational 
availability improvements.

Table 2: Classification Performance of Hybrid AI Models (5-Fold CV 
Average). Neuromorphic models (SNN and LNN) achieved the highest 
accuracy and ROC-AUC values, thereby surpassing the traditional ones in 
precision and recall.
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mans and machines brought about a 4% reduction in cases of 
false negatives, demonstrating the potential of explainable AI 
for high-stakes industries.

6. Scalability and Deployment Readiness:
Evaluations performed on multiple edge platforms showed 

the scalability of the design. Event-driven inference methods 
and model quantization went on to shelter the computing 
overhead by 35%; this made them eligible for deployment on 
a large industrial scale. Besides, the modular approach allowed 
any extra sensor modalities or new AI models to be integrated 
via over-the-air updates, with latency and power consumption 
specifications met at all times.

�   Discussion & Conclusion 
The adoption of AI-powered predictive maintenance (PdM) 

systems—especially those designed for edge deployment—is a 
premier breakthrough in mechanical system monitoring. The 
results of our model comparisons confirm that the integration 
of neuromorphic networks (LNNs and SNNs) with explain-
able AI (XAI) interfaces far exceeds traditional predictive 
approaches on every metric that was evaluated: accuracy, la-
tency, interpretability, and power efficiency. Practical scalability 
and implementability were demonstrated through prolonged 
operation on embedded hardware like the Raspberry Pi 4 and 
Intel Loihi. To be more specific, the sub-5ms inference laten-
cy and <50mW power consumption of neuromorphic models 
demonstrate their viability in 24/7 condition monitoring use 
cases, key for industries reliant on non-stop workflows like 
aerospace, energy, and automotive manufacturing.

Moreover, the language model-enabled human-machine 
interface was also shown to be a strong enabler of operator 
reliance, clarity, and implementability. Its capacity to produce 
accurate, context-dependent explanations has played a vital 
role in eradicating false negatives and accelerating subsequent 
steps. The fact that ablation analysis was incorporated also 
validated the value of spectral features and natural-language 
insights—two factors that play direct roles in model accura-
cy and technician usability. Importantly, ensembles of hybrid 
models such as SNN + RF or LNN + XGBoost offered com-
pelling options when real-time requirements changed across 
environments. Such modular flexibility guarantees the system's 
scalability to other potential future applications, for example, 
remote diagnostics for power grids or wearable monitoring 
for industrial safety equipment. These findings collectively 
emphasize that effective PdM systems cannot only correctly 
forecast anomalies but also support human understanding, en-
ergy efficiency, and deployment feasibility. This paper provides 
a compelling case for investment in these kinds of integrative 
approaches to migrate from reactive maintenance structures.

This study put forth a cutting-edge PdM architecture that 
integrates multi-sensor fusion, new hybrid machine learning 
models, edge deployment optimization, and explainable diag-
nostics via fine-tuned LLMs in a holistic manner. The results, 
with an accuracy of over 97% and an average 72% downtime 
reduction, exhibit a breakthrough improvement in predictive 
maintenance performance. By demonstrating how neuromor-

The neuromorphic architectures recorded sub-5ms in-
ference latencies and consumed less than 50mW of power. 
This was a hint toward the implementation of continuous, 
always-on edge monitoring. Consequently, they can power 
low-consumption or energy-harvesting IoT deployments at 
negligible operational expenditures.

4. Ablation Analysis: How Different Modules and Features 
Function:

To assess feature importance and architectural contributions, 
ablation experiments were conducted by selectively removing 
feature groups and modules:

•	 Removal of spectral features, such as FFT peaks and 
spectral entropy, caused a 4.2% average drop in accuracy. 
At the same time, the alteration caused a 3.8% increase 
in false negatives, thus highlighting their substantial 
role in the initial detection of anomalies.

•	 Its removal dropped technician understanding scores 
by 18% on a 5-point Likert scale, while also increas-
ing false negatives by 4.5%. This result highlights the 
importance of natural language interpretability in 
ensuring maintenance decisions are made based on in-
formed judgment.

•	 Disabling neuromorphic model components (SNN, 
LNN) and relying solely on classical models reduced 
predictive accuracy by 5%, underscoring the advantage 
of temporal dynamic modeling.

5. Human in the Loop Evaluation:
A group of 30 experienced maintenance technicians tested 

the performance of a highly calibrated Large Language Model 
specifically designed to explain diagnostic methods. The main 
metrics based on their answers include:

Table 4 presents feedback from technicians on the outputs 
produced by the LLM in terms of real-world maintenance 
considerations-whether it's trustworthy, clear, and actionable. 
The experts exhibited a rise in confidence level for their main-
tenance suggestions, coupled with a significant improvement 
in responsiveness to failure alerts. The cooperation among hu-
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Table 3: Inference Latency and Power Efficiency on Edge Devices. Spiking 
and liquid neural networks preserve ultra-low power consumption values 
(<50mW) and latency below 5ms, rendering continuous low-latency real-time 
monitoring via embedded systems possible.

Table 4: Human in the Loop Evaluation. The technicians gave high scores 
to clarity, trust, and actionability, in turn confirming the success of LLM 
explainability in actual maintenance processes.
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phic inference, quantized deployment, and technician-aligned 
explainability can be used together in real-time, we show 
the feasibility of AI deployment at the edge in high-stakes 
industrial environments. Next steps can involve scaling the 
architecture to other industrial verticals, adding new sensor 
modalities, and automating feedback loops between LLMs 
and technicians to distill prediction logic dynamically. Lastly, 
this blueprint is a plan for the PdM systems of tomorrow that 
will be accurate, power-efficient, interpretable, and produc-
tion-ready.

Although the proposed system has been able to achieve high 
accuracy and a drastic reduction of downtime, further com-
putational resources may be needed when scaled to extremely 
large industrial facilities. Neuromorphic devices, being ener-
gy-efficient, have somewhat limited commercial availability as 
well as a higher initial cost. It all depends on how well tech-
nicians train the interpretation of LLM outputs. Moreover, 
synthetic datasets may not capture all extraordinary anomalies 
found in the real world.

Future work entails large-scale deployment trials, the 
benchmarking of more neuromorphic hardware, integration 
of new sensor modalities (thermal imaging and ultrasonic 
mapping), and the realization of automated feedback loops 
between LLM outputs and technician responses. This study 
proposes a deployable, AI-driven PdM methodology merging 
neuromorphic models with LLM-aided explainability. Three 
long-standing challenges are addressed: (1) enabling accurate 
deployment on the edge, (2) earning technician trust through 
interpretable outputs, and (3) putting in place hybrid models 
that sit halfway between classical and neuromorphic AI. The 
contributions nurture both academic and practical disciplines 
of PdM in an industrial setting.
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