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B Introduction

The universe we observe works under many complex laws,
from the conservation of energy and momentum to more com-
plex theories such as general relativity and the standard model
of particle physics. However, as complex as these laws might
seem, they are rooted in a more fundamental concept of sym-
metry. Symmetries in physics are transformations that leave
certain properties of a system unchanged.'?

After Sir Isaac Newton formulated his Principia Mathe-
matica, people worldwide began to study physics within the
framework of Newtonian mechanics. This approach looked at
nature in terms of forces and acceleration, which are mathe-
matically described as vectors—abstract mathematical entities
representing both magnitude and direction. Newton described
kinematics and dynamics in terms of quantities that we now
represent as vectors and laid the groundwork for what later
became vector calculus.** While Newton's classical physics
framework was influential, it overcomplicated certain systems,
such as the double pendulum, which involves 5 vectors. Joseph
Louis Lagrange proposed a different method for these types
of systems.

Lagrange came up with Lagrangian mechanics and found
that nature always follows a path of least action. The actions
are the integral of a quantity called the Lagrangian. There
was no method to analyze which action was the least without
computing all the integrals.®” So, Lagrange, along with many
other mathematicians, especially Leonhard Euler, developed
the calculus of variations and derived the Euler-Lagrange
equation.*” A mathematician, Emmy Noether, expanded on
the Euler-Lagrange equation and formulated Noether’s the-
orem. The theorem states that for every continuous symmetry
of a physical system, there exists a conserved quantity.'®'" For
example, a perfect sphere is continuously symmetric under ro-
tational translation. If you suspected a symmetry in a system,
you could use Noether’s procedure and derive a conservation

law. The three most common symmetries applied to Noether’s
theorem are:

1. Translational Symmetry in Space: Leads to the conser-
vation of momentum.

2. Rotational Symmetry in Space: Leads to the conserva-
tion of angular momentum, as shown in Figure 1.

3. Translational Symmetry in Time: Leads to the conser-
vation of energy.'

Figure 1: A sphere’s rotational symmetry leads to angular momentum
conservation via Noether’s theorem.

The reason for analyzing Conservation laws is that they are
among the most important tools in physics. They are extremely
fundamental and allow for a more efficient method to solve
complex physics problems."

The question this paper addresses is to what extent No-
ether’s theorem can be applied. As the paper will demonstrate,
the principles of symmetry and conservation laws have ap-
plications across classical and modern physics. The theorem
provides a unified framework that describes the behavior of
many physical systems, from the conservation of momentum,
angular momentum, and energy to even more complicated sys-
tems with gauge symmetry, complex scalar fields, and scalar
quantum electrodynamics (QED).

Mathematical Prerequisites:
Before diving into the derivation, some mathematical pre-
requisites are needed. Some mathematics behind Lagrangian
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mechanics, Hamiltonian mechanics, and Noether’s procedure
is needed to fully understand the derivation.

Calculus of variations: The calculus of variations is a branch
of mathematics that analyzes extrema. In regular calculus, ex-
treme points are found by taking the derivative and setting it
equal to 0. However, with the calculus of variations, instead of
analyzing functions, we analyze functionals, which are func-
tions of functions. To find the extreme functionals, we need to
solve a differential equation and can’t simply set the derivative
equal to 0. Euler and Lagrange found out that the differential
equation allows us to find extreme points. For physics purpos-
es, it shows the path of least action.

So, we are trying to find a function that y(x) makes a given
functional J[y] stationary. This function refers to the action in

physics. The action is given by:

Jyl = f;F(x,y.y’)dx (1.1)
Where y = y(x) is the function to be found, y' = % and Fis
a given function of x, y, and y’

Derivation of Euler-Lagrange Equation (Figure 2)

Perturbation: Consider a small perturbation of the function
y(x) a small parameter ¢ and a function that 7(x) vanishes at
the boundaries and b

y(x) = y(x) + en(x) 1.2)
& X
YOS ¥(x)
" (Xg.¥p)
:‘f'
§ __extrernal
(x,¥1) y0= function v

Figure 2: Visualization of the variation of a function y(x) perturbed by en(x),
which vanishes at the endpoints (x4, y1) and (xo, yo). This illustrates the idea
of varying a path to find the one that minimizes the action in the calculus of
variations.

Functional Variation: The functional J[y] becomes:

Jly+enl =[] F,y+eny +en)dx  (13)

First Variation: Expanding J[y + en] in the Taylor se-

ries and keeping terms up to the first order in:

8] = 5]y + en] (1.4)
8= (En + 2n')dx (L5)

Integration by Parts: Integrate the term involving ' parts,
assuming

Stationarity Condition: For §/ to be zero for all 7(x) the in-
tegrand must be zero:

aF d {dF
5y~ ax () =0
With this, we have understood the math of calculus of vari-
ations. This is the groundwork for the theory of Lagrangian
mechanics. In Lagrangian mechanics, instead of forces, we an-
alyze energy. The Lagrangian is equal to K-P, where K is the
kinetic energy and P is the potential energy. While it doesn't
have a simple physical interpretation and doesn’t correspond
directly to a measurable quantity like energy or momentum,
it plays a central role in determining the dynamics of a sys-
tem. What Lagrange found out was that nature always follows

a path of least action, always trying to minimize something,

which is the action. The action is:
>

S[Cb ta, tl] = f L(q’ Q) dt
ty

B Methods: Noether’s procedure

To see the full extent how Noether’s theorem can be applied,
we must first analyze Noether’s procedure

1. Identifying the action S and the Lagrangian L.

2. Determining the symmetry transformation ¢, — ¢, + e,

3. Calculating the variation of the action under this trans-
formation.

4. Using the Euler-Lagrange equation to simplify the ex-
pression.

5. Integrating by parts to isolate the boundary terms.

6. Identifying the conserved quantity Q.

Q_here represents the conserved quantity associated with a
given symmetry. Depending on the symmetry, Q_may repre-
sent energy, linear momentum, angular momentum, or another
conserved charge. Noether showed that if the Lagrangian re-
mains unchanged under a continuous transformation, this
invariance leads directly to the conservation of some physical
quantity.

The paper will look at different systems and try to apply
Noether’s procedure to each case to obtain the Noether current
for each.

For some of the simpler, classical systems, we will justify
how the Lagrangian and the action are derived. However, for
more complex systems later in the paper, especially dealing
with quantum field theory, the justification will not be provid-
ed and referenced to existing papers.

(1.9

(1.10)

B Results: Noether’s theorem applied to

Systems

2.1: Energy Conservation due to Noether’ theorem:

Consider a general system L. This system could be anything
from a simple pendulum to a complex multi-particle system.

n(a) =nb)=0 (1.6) The system is defined by a set of generalized coordinates g,
_ b (0F d [aF and their corresponding ¢; velocities. We assume that L has no
6=, (@'? Coax (B_y’)n) dx (1.7) explicit dependence on time. The dynamics of the system are
overned by a Lagrangian L(q,§)
o= (5 - & (35))ex g B ya Lagrng
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Since L depends on the evolving functions g,(¢) and g,(), the
total derivative with respect to time can be computed in two
ways. The first is the chain rule:

dL _ dL . |, 9L .
o a_qi‘h a_qiq" (2.1)

The second way is viewing L as a function of time through
q(1), ¢(t). This derivative is simply dL / dt

These two perspectives must agree. The point to notice is
that there isn't a dL/0t term, because L has no explicit time
dependence.

To reconcile the two expressions, we replace dL/dg; using
the Euler-Lagrange equation:

d (0L JL
ar (a_qi) “oq " (2.2)
Substituting this into (2.1) gives:
ac = Grag) 4o+ 3.4 (2:3)
We can now reorganize (2.3), noticing that:
4oL\ oL d g, oL
(Ea_qi) T 501~ ar (qi a_qi) (2.4)
Therefore,
= lisg) (2.5)
Rearranging, we find:
a4 1) =0 (2.6)
Equation (2.6) shows that the quantity:
H =g ;;L —L 2.7)

Is conserved in time. This quantity is called the Hamiltoni-
an of the system.

In the usual mechanical case where L. = T' = V, with kinetic
and Potential energy, we find explicitly:

. oL
qia—di=2T (2.8)

So that
H=2T-L=2T—-(T-V)=T+V (9

Thus, the Hamiltonian corresponds to the total energy of
the system: the sum of the kinetic and potential energy.

The conservation of energy is directly linked to the invari-
ance of the system under time translations. If the Lagrangian
doesn’t change with time, then the total energy stays constant.
This shows the fundamental principle that the outcome of
a process doesn't depend on when it takes place because the
laws of physics are time invariant. Energy can't be created or
destroyed. It can only change form between Kinetic and Po-
tential.

2.2: Conservation of momentum:

T

z
_’ 2

—
K

4/\/\A/_

Figure 3: Visualization of a two-mass spring system undergoing a uniform
spatial translation by a constant x; and x,, which are equal.

mi msa

Consider this system of 2 springs: The Lagrangian of this
system (Figure 3) is:

1 N 1 N 1
L= cmyx? +omyx? — k(g — x,)° (2.10)
Now we apply Space translation to this system: x,"— x,"+ ¢
Now with this translation, we can calculate the Lagrangian
again:

L(x) = 3my( +0)2 +5my(cp +0)2 =3k +c—x,— ¢ (2.11)

The derivative of a constant is just 0, and the ¢’s in the po-
tential energy cancel out, leaving the original Lagrangian. L=L"
So, we have symmetry.

Now to apply Noether’s procedure:
Let X,(#) and X,(#) be the true paths of the masses. Then

consider a tiny time-dependent variation.

x(t) = %) +&(00) (2.12)

X, (1) = Xy(t) + &(t) (2.13)
Note that £; = &, = 0 since the variant is done equally for
both. The action without the variation is:

t; .
S[xy (£, x2(0)] = fE:L(x(f)f (1)) dt (2.14)
The action with the variation should have 3 terms: the orig-
inal action, the variational action, and some variation of second
order:

Sl () + &1(0), x2(1) + £2(1)] = S[x1(2), %2 (£) ] + 85 + 0(e?) (215)
= [2m(E 4 Hima(E ) —IkGE e~ B - o) (2.16)

= f::%ml(x_;z +2xE +e2 ) +im (R + 258 +6) - kG - x)? (2.17)

The & is too small of a variation, so we can ignore it. More-
over, notice that we can separate this integral into the original
action and the &* terms.

= [ (Emm o+ imy B — kG - T)?) de+ |[F (my 3E + myxE) de| + 0 (2.18)

The only integral within the vertical bars is the variational
action, and the one we care about. Then, by the principle of
least action, 8§ = 0 and the endpoints &,(2) = £,(#)

S (i E +my %, )de = 0 (2.19)
Next, integration by parts is applied:
L (miE +moxg)de = miFretma (e b= fFe(m G +me 5G) 4 (2.20)
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Remember, (7)) = &(#,) = 0.So, the first term cancels out.

Therefore:

0= [7e(m L) +m £(%)) (2.21)

The only way this integral is 0 is if the integrand is 0.

d e o d
0= E(ml (xl) + my (xz)) = E(pl +p) =0 (2.22)
We have shown that the change in momentum of the 2
masses stays constant and thereby shows conservation of mo-
mentum.

2.3: Conservation of Angular Momentum:

Consider the system shown in Figure 4. Let the sun be
and the Earth be 72,. We make the approximation m; >> m,
so the Sun can be treated as fixed at the origin. Therefore, the
Lagrangian of this system should be:

Gm:lmz

L= gmy(2 47262) 4 (2.23)

There are 2 parameters that we can change in this problem.
r or 0. If we change r, the PE changes, and so does the La-
grangian. So, to have symmetry, only can 6 change. 0’ = 6 +
c. Where ¢ is constant. Since 6= 0 and r is unchanged, the
Lagrangian doesn’t change. L=L'

Planet

Figure 4: Visualization of the Earth-Sun system, where the Earth (mass m2)
orbits the Sun (mass m1) in an elliptical path, with the Sun assumed fixed.

Consider a tiny time-dependent rotational variation. 0—-0
+ &(#). The action after the variations gets separated by 3 terms.
The original action, the variational action, and some variation
of the second order.

S[6 +¢ 1] =S[6, 7] + 85 + 0(2) (2.24)
tz
(o) oo
ty
tz
= f Emz(f'errz (§2+2§é+éz))+@]dt (2.26)
ty

The & is too small of a variation, so we can ignore it. More-
over, notice that we can separate this integral into the original
action and the terms.

£
f mar20é dt
ty

tz
[
= [lm (1‘”2 + rzéz) + L"’mzl dt + + f 11"r1 r2édt (2 27)
- 22 r 22 :
t
tq ’

The only integral within the vertical bars is the variational
action, and the one we care about. Then by the principle of
least action, 6§ = 0 and the end points &, = ¢, =0

(2.28)
After integration by parts:

f;lz (mz r? 55) dt = em, [rz 5]? - f:j € %(mz r? 5) dt  (2.29)
1

Notice the first term cancels out because of the boundary
conditions. Therefore:

0=f(m,r20¢) dr (2.30)
The only way this integral is 0, is if the integrand is 0.
L (myr2g) =0 (2.31)

It is convenient to define the angular momentum as
J =m0 . Then the equation becomes:

d

oy J=0 (2.32)
We have shown that the change in the angular momentum

of the Earth and the Sun stays constant. Showing conservation

of angular momentum.

2.4: Conservation of mass-energy:

For the derivation of the mass energy equivalence equation,
we are going to assume it's a relativistic free particle. By free
particle, it means that there is no P.E., or that there can be no
force on the particle, thereby the momentum remains constant.
The particle is only moving through a vacuum. Moreover, by
relativity, the only main assumption we are making is the pos-
tulates of Special relativity.

1< postulate: Laws of physics are the same and can be stated
in their simplest form in all inertial frames of reference

2™ postulate: speed of light c is a constant, independent of
the relative motion of the source.

Mathematically, all this will do is put a gamma term (y) in
the equations.

_ 1

1=z

(2.33)

Philosophical Assumptions: When dealing with free parti-
cles in physics, understanding the concept of travel through
space and the importance of the Lagrangian is crucial. The
Lagrangian explains all the physics about a system in a phil-
osophical manner. It has all the physical properties relevant
to understanding a system. This includes its motion and the
factors influencing that motion. In physics, only specific prop-
erties, such as mass, acceleration, and velocity, significantly
impact a system's motion or its interactions. Other proper-
ties, like color or luster, are not as important. Essentially, the
Lagrangian can be thought of as the energy analogy to the
equation F=ma.

DOI: 10.36838/v8i2.39
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In special relativity, a particle isn’t only travelling through
space and time, but instead through space-time. The path the
particle takes through spacetime is called the world line, as
shown in Figure 5.

The world line of a particle is given by its spacetime coor-
dinates: (cz, x(2), y(#), 2(£). There is ct, instead of just t, because
spacetime is a four-dimensional continuum where time and
space coordinates are combined into a single entity called the
spacetime interval.

§=.c%t? — x2 — yz — z2 (2.34)

If we instead consider a small arc length ds, the length be-
comes:

ds = \[c?dt? — dx? — dy? — dz? (2.35)

We need to introduce a concept called proper time. Prop-
er time is the time interval measured by a clock moving with
constant velocity from one event to another. An observer in
motion relative to a clock will always observe it running slow-
er than a clock at rest in their own frame. Proper time (7) is
specifically the time read by a clock present at both events,
with both events occurring at the same place in the clock's
rest frame.

cta

x y

Figure 5: Visualization of a world line of a relativistic free particle traveling
through spacetime. This illustrates the motion of a particle not just through
space, but through four-dimensional spacetime, where the arc length of the
world line corresponds to the proper time experienced by the particle.

Proper time is related to the space-time interval (s) between
two time-like events by the equation:
As das
At = - = dt = (2.36)
From the arc length equation, plug into the proper time
equation.

Je2dt? —dx? —dy? -
c

dr =
We can define a velocity for dx, dy, and dz, to get:
= wr= @ _2ltE) (3.38)

(2.37)

Zat2- z
d’[+‘/c dt?—(vdt)

JatZz (c2-v?)
c c

= dt =

Simplifying further, and using the Lorentz factor, we get the
equation:

dr = dt (1 ——) = dr = % (2.39)

Lastly, we need to make one assumption. The Lagrang-
ian must be Lorentz invariant. The obvious invariance is the
length of the world line. Since it’s a free particle, we can just
let the action be:

S=ua f; ds (2.40)

Here, o is some constant. This just means the action is pro-
portional to the length of the world line. The length of the
world line is also equal to the proper time interval. Then we
can substitute the proper time equation derived earlier.

S=a f::dr = § = aj:f%= af? ( f1——)dr (2.41)

To get the value of y , we can keep in mind that in the
non-relativistic limit (v<<c), the canonical momentum defined
by dL/dq reduces to the classical expression mv.

oL _ (l) e _2
mv = 5= 0 i . racv(24)

c

For the variations to match, @ = — mc? so now the relativistic
Lagrangian is:
2
me
L= - 243
; (2.43)
Derivation: Now we can apply Noether’s theorem to the La-

grangian.

Spacetime Translation Symmetry:

Time Translation Symmetry: The Lagrangian (L) does not
depend explicitly on time (t), implying conservation of energy.
For time translational symmetry, Noether’s theorem states that
the conserved quantity is the total energy. E = 0L/9z This ex-
pression can be justified, but needs more discussion.

Space Translation Symmetry: The Lagrangian (L) does
not depend explicitly on position (r), implying conservation
of momentum. For space translation symmetry, the conserved
quantity is the momentum P. P = dL/0r

Calculating P first.
_ 6_1. _ (mcx)
Pi=5= 2 (2.44)
c

The Hamiltonian, which is H = px - L becomes:

(m-c-x) (mcz) m(c?v

===

Remember that the Hamiltonian (H) just shows the total
energy of the system. Therefore:

E= m(c?v?)

JE (2.46)

For a particle that isn't moving (v = 0), the equation gets
reduced to

E = mc? (2.47)
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3: Noethers Theorem Applied in Reverse:

In the previous systems, we applied the Noether theorem to
particles. Now, will apply Noether’s theorem to fields, specifi-
cally the electromagnetic field. The transition from examining
symmetries of particles to the field is a big shift. We can't just
consider fields as just functions of time, but as functions of
both space and time. To do that, we need to introduce the
mathematical concept of tensors.

To better understand the difference between Lagrangian
mechanics in classical vs field theory, is to think of an analogy
of a car traveling along a road. The Lagrangian allows us to de-
scribe the car’s motion by incorporating its speed and position
on the road. This is how we treat particles. But with fields, we
instead think of multiple cars along the road, and each segment
of the road can have unique characteristics and dynamics, and
this is where the idea of Lagrangian density becomes import-
ant because they are functions of both space and time.

Think of each segment of the road as representing a point in
space and time.

(@) could represent the number of cars or their speed at each
point on the road. Aka. Traffic flow.

(8}l ®) represents how the number of cars or their speed
changes from one point on the road to another. Aka. Changes
in the traffic.

So, the Lagrangian density describes the traffic dynamics
over the entire road. It shows how each segment of the road
interacts with its neighbors in space and time.

Another shift we will be considering, finding the true use-
fulness of Noether’s theorem, is to instead examine how the
existence of conservation laws leads to conserved quantities.
We will be analyzing the conservation of electric charge and
how it gives rise to a symmetry, specifically gauge symmetry.

Electromagnetic Field: The electromagnetic field is de-
scribed by 4 equations, namely the Maxwell equations.

1.V-E= :in -- Gauss's Law for Electricity
2.V-B = 0-- Gauss's Law for Magnetism

3.VXE=- Z—f -- Faraday's Law

4.V X B = o] + g0 5 - Ampére's Law

Another way to describe this is to use the Electromagnetic
Tensor. Which gives us the benefit of being invariant of the
coordinate system we use. The Electromagnetic Tensor is de-
fined as:

by = 9,4,

- avAu (3.1)

Some understanding of the notation here is necessary before
proceeding.

. AH represents the components of the electromagnetic po-
tential,

. 8}1 denotes the partial derivative with respect to the space-
time coordinate, x"

* B, v are indices running from O to 3, corresponding to the
spacetime dimensions (time and spatial dimensions).

Conservation of charge: In any closed system, the sum of all
positive and negative charges remains unchanged.
Consider Figure 6. The total charge inside is found by inte-

grating the charge density over the volume:
Q) =[,p(r,t) d°r

The change in Q_over time is due to the flow of charge
across the boundary surface B of V. Now, we introduce another
variable, current density (]). This is a vector representing the
amount of charge per unit area per unit time flowing across S.

Consider a patch on B at point r with are d4 The current
through this patch is given by the component of ] perpendic-
ular to the surface, where n is the unit vector normal to the
surface: /. n

Current through the patch = J. ndA

Integrating this over the entire surface, we get,

I=[] ndA

(3.2)

(3.3)

z

Y

x

Figure 5: Volume Vin space with charge density representing the charge per
unit volume at point r and time t.

Now we can state the conservation of charge mathematically.
(I) measures the amount of charge per unit time leaving the
box (or entering it, if [I] came out negative). Local conserva-
tion of charge is the statement that if charge (I) per unit time
flows out through the boundary, then the amount of charge Q_
inside the volume of the box goes down at that same rate:

dQ _

dat

The minus sign reflects our convention that I > 0 means out-
ward flow. To convert the surface integral in (3.3) into a volume
integral, we need to apply Gauss’s theorem.

¢ ] ndA=[V-]dr

(3.4)

(3.5)

Substituting (3.5) into (3.4) and using Q(t) = f, pd*r , we get:

d

S lep d¥r=—[,] -ndA (3.5)
To encompass al/ of space, so that the boundary is going to

infinity, the current density (J) should go to zero in any physi-

cally reasonable setup, since there’s nowhere left for the current

to flow out to. Then the right-hand side vanishes, and this

equation says that the total charge in all of space is constant.

DOI: 10.36838/v8i2.39
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Since this equation holds for any arbitrary volume (V), the
integrands must be equal pointwise, leading to the continuity
equation:

XAV =0=0p+V-] (3.6)

The continuity equation in four-dimensional spacetime is:

a

L J4 =0 (3.7)

This depicts conservation of charge. Now we will go back
to the electromagnetic field tensor, which is a key concept in
relativistic electromagnetism. It compactly encapsulates the

electric and magnetic fields.

FH = gHrAY — gVAH (3.8)
Where A" is the four-potential, which includes the scalar @
potential and the vector potential A

At = (¢,4)

Now, to derive conservation of charge from the symmetry,
we need the Lagrangian.

The Lagrangian density for the free electromagnetic field is
given by:

3.9

Lpgy = _TIF,quW (3.10)

The coupling of the electromagnetic field to charged par-
ticles is introduced through the current density J " and the
ff)ur'—potential A " The coupling term in the Lagrangian den-
sity is:

Line = —j*4, (3.11)

The total Lagrangian density L is the sum of the electro-
magnetic field Lagrangian and the interaction term.

L=—1F,F* — jhA, (3.12)

Now we perform a symmetrical operation that leaves the
Lagrangian invariant. Such an operation or transformation is
called the Gauge transformation.

Ay =4, +0,a (3.13)

a is some spacetime scalar function. Let's now see how the
Electromagnetic Tensor changes.

Fl, = 8,4, — 8,4, (3.14)

Substituting the transformed potential AH':

Ely = 0,(Ay + 8,0) — 8,(A4, + 8,a) = 3,4, + d,0,@ — 3,4, — 8,8, (3.15)

Since the mixed partial derivatives are symmetric,

So, the field tensor is invariant under the gauge transforma-
tion. So, the Lagrangian density should also be invariant. L =L,

Noether’s Procedure:

Now let's perform Noether’s procedure with the gauge
transformation. Since the Electromagnetic Tensor was
invariant under Gauge transformation, the field term

1
Lgw = —Fo F™ =0
So, its variation in the action does not change. Let's look at
the coupling terms. L = —j#4,

Applying a variation, we get: 6L = —j* 04, = —j*4,— —j*d,a.

8§ = ft? SL d*x = — fttf[j'u“l# +j“aa“] d*x (3.18)

ta it
',.t]. J* Ay 5 just the original action of the Lagrangian, which is
= - f:f j#A,d*x  'We now perform Integration by parts.

= - [Pragdx = P40 - [Pt adx (319)

a (t1) = a (1) = 0. From the conservation of charge, we have:
L2

ot =0= f a(OuJ*) d*x

21

(3.20)

Because of the current conservation ((9“]“), this vanishes and
68 = 0. Showing the Gauge symmetry. But there are some im-
portant implications. We assumed that conservation of charge
had to exist for there to be Gauge symmetry. We didn't get any
conserved quantity. This is because we had a redundancy of
information. This means that all components of a field tensor
or set of equations are not independent. Some can be derived
from others due to symmetries or constraints. This redundancy
ensures that physical principles, like the conservation of elec-
tric charge, are naturally satisfied and can’t be derived directly
from Noether’s theorem.

4: Noethers theorem to QF T

Symmetries and Noether’s theorem can also be applied to
quantum fields. In quantum field theory, every type of particle
is associated with a corresponding quantum field. For example,
the electromagnetic field is associated with photons, while the
electron field is associated with electrons. The specific field we
will be looking at is the complex scalar field.

4.1: Complex scalar field:

Unlike the electromagnetic field tensor, which describes
both the electric and magnetic fields, a complex scalar field is a
type of quantum field characterized by values that are complex

a” Oya = ava#a’ (3.16) numbers (numbers that have both real and imaginary parts) at

These terms cancel out, leaving us with: each point in space and time. An example of a complex scalar
F,h’v - a.u 4, -2, A# =E, (3.17) iiceii rlsﬁ lelcei:nggs Field. The Lagrangian density of a complex
L=(3:9)(%u¢) - m'9"¢ (4.1)
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We now perform a global U (1) phase transformation.
Q- 0= D, 0% > 0¥ = ¥

This changes the phase of the field across all spacetime
points. In the transformation £, is a constant function and elf
is a complex number that changes the phase of @(x) and ©*(x).
To see the Lagrangian is symmetric under this transformation,
first let's look at the kinetic energy term:

a0 - =0d,(e ¢p) =€ a,¢

0,0* = 9,0" =d,(e” ¢*) = e 9,0" 4.3)
The product of these two terms becomes:

(0.9°) () - (7 ,87) (e 8,0) = 1- 6,0"0, (4.4)

This is because the phase factors e®and e® o cancel each
other out, leaving the kinetic term unchanged. To see why this
is, we'll analyze Euler's formula.
etf =cos(B) +isin(B) and e~¥# = cos(—B) +isin(—p) =cos(B) — isin(B) (45)

(4.2)

Multiplying them together, we get.

ef . e~ =[cos(B) +isin(B)][cos(B) —isin(B)] = cos?(B) —icos(B)sin(B) + isin(B) cos(B) —
(isin(B))? = cos?(B) — (isin(B))?

and since
i?=-1,= =cos?(f) +sin?(f) =1 (4.6)
Now let's analyze the mass term.
d'p—p P = (e Ep)(ebp) =9 (47

Since the 2 phases cancel out, we get back the original @
terms. The mass will stay constant, and therefore the mass term
is also invariant, meaning the whole Lagrangian is invariant.

L=L"

Noether’s procedure:

5[S] = f:f SL d*x (4.8)

Where si ::—;6¢+a%¢‘ 8(8u9) + = 8(d,9+) (4.9)

(o q:) d(d ¢)

Now let's solve each term by term of the variation in the
Lagrangian.

%L _5(a,p) = o1¢*

0ud) and

0@ = 0 (4.10)

B(B ¢)

8p = ¢'—¢ = efp — ¢ We can expand e” using Taylor’s

expansion.

= 14if = Bh = @) = p+iBd — Lo+ = B@)—p=ifp — Lo+

We can neglect the higher-order terms and be left with

5¢ ~ iBp and 5¢° ~ — ifp"
Also notice that 8(3.) =0,(5¢) = 3,8¢) and 5(3,8°) = 3,(6¢") = u(~i6")
Lastly, we have, 35 =-m?¢" and 7= -m?¢".  Now let's sub-
stitute these values into the variational Lagrangian.

8L = —m2¢*pip + m*pif + 0" 9,¢if — 3" $d,¢"if = if(¢p* 040, — $3"9,0")

8[S1 = J*6L d*x = [*(ip¢ 9"a,¢)d*x — [*(ipp0*0,4")d* x (4.11)

We can now perform integration by parts on the first inte-
gral and plug in the endpoints.

(B9 049,¢)d* x = i([/fa“]:j = [ Be" 9#). Since B(t,) = B(¢,) = 0, we are left with:

—i f;f L (4.12)

We can do the same for the second integral. Perform inte-
gration by parts and plug in endpoints.

f:f( iBp*ara,p)dtx = —i ([ﬁ ]tz ftz Bpo+ ¢* ) since B(t,) = B(t,) = 0, we are left with:

i f,? Bpo* ¢* (4.13)
Combining these two integrals together, we have,
[ Blo*pp" — 94ggld x =0 (414)
By the principle of least action
= i[04 pg" — 8 p*¢] =0 (4.15)

So, the conserved current is J/' =i [0!'®®* - 9'®*d]. This
depicts the conservation of charge in QED.

What if f was instead a function of space and time.
L—=a(xt)

D — @' =P and O* - O =
analyze the K.E. term first.

3. > 9, (WD) = e (9,0 +i(9,a)p). We get this expres-
sion if we use Taylor’s Expansion. We could do the same for

9,0"
3™ - 8, (e D7) = ele®D(9,¢p" — i(D,a)p"). 1* (4.16)

e@®V@* Like before, let's

Therefore, L' = ¢! . e=i@®0(3,¢* — i(3,a)$*) (8, + i(3,2)$) — m*¢'¢"
Expanding, we get.

L'=0,4°0"¢ + ip*(9,@)0“ ¢ — ip(0@)3,9" — (d,@)(0*a) + (¢"¢) —m?¢'¢" (4.17)

This shows that L. # L’ because of the additional: 8 o terms.
They don't vanish.

When the phase transformation was a function of space and
time, the Lagrangian of the complex scalar wasn’t invariant.
This is called the local U (1) phase transformation. This trans-
formation led to a symmetry that was internal. The phase of
the complex scalar field can be locally altered (meaning it can
be changed at each point independently) without affecting the
overall physics. The specific conserved quantity of a complex
scalar field depends on the context of the field and the physical
theory being discussed. In some theories, complex scalar fields
can represent particles with conserved quantum numbers like
baryon number or lepton number. In other theoretical mod-
els, such as quantum electrodynamics (QED), a complex scalar
field can represent particles with electric charge. It can also be
applied to the Standard Model of particle physics, where the
Higgs field is a complex scalar field.”

This invariance under the local phase changes is important
in constructing theories like the Standard Model of particle
physics. This also leads to the Higgs field and spontaneous
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symmetry breaking. The Higgs field has a symmetric poten-
tial, and the field value at each point is zero, which represents
a high-energy, unstable state. When the field transitions to a
lower-energy state where it has a non-zero magnitude every-
where in space, the specific direction of the field in the complex
plane breaks the symmetry. Particles interacting with the Higgs
field will then gain mass. The interaction depends on the field's
magnitude, which is now non-zero and uniform across space.'®

We will look at the complex scalar field in the context of

QED.

4.2: Scalar QED:

Let’s now apply Noether’s theorem to scalar QED, which
extends the principles of QED as it deals with spin-1/2 parti-
cles like electrons to scalar fields. Scalar QED is an extension
of classical electrodynamics and quantum field theory. It de-
scribes the interaction between scalar fields (fields that are
represented by scalar particles, which have spin zero) and the

electromagnetic field.”” The Lagrangian of the scalar QED is:
L= (D) (Dusp) —m?d"$ — 1o F*¥  (4.18)

The mass term and the electromagnetic tensor have already
been introduced before. The only new thing is the covariant
derivative, incorporating the interaction with the gauge field
A .18

"

L=(0,0" +ied,p *)(34%¢p

Let's apply the local U (1) phase transformation:
(,b‘ N ¢»«’ — é.;,—ia(x,t)(p»e

D¢ ~ Du¢'(3,

rule to obtain:

— leAMd) — m2ep * ¢p —~E,, FH (4.19)

4 KV

—ied,)e ' *@Vp We can then use the product

Dup = (0 — ied,)e™CD = ¢1et0) (3, + i(B,a) ) § — ieye®p = e (9, +i(D,a)p) — ieAup =
eiast) (a,‘ —te (4, - ia“a)) ®.
To make sure the covariant derivative is invariant, the gauge

field AP must transform in the way obtained in the double pa-
rentheses. 4, - A}, = 4, +>d,a
e

This makes sure that D,¢ —» Dj¢’ = e**D,¢. So now we can
combine the two terms and get:

(0,8°) (0u) ~ (0i") (01 ) = e(0,6")e(D,) = (D, )(Dus). Since (4 20)

ela . p—id — 1

The same applies to the mass term.
i - mE (e P P) = g

What about E,,? F,, = 8,4, — d,A,. Remember the trans-
formation we obtained to make the covariant derivative
invariant:

A=Ay = Ay +§au“ = By = 0,4, — 0,4, =9, (Av +§a#a) -0y (Au +§6‘la). (421)

Since 8,0y,a = 8,0, = Fj, = Fyp. and every term of the
scalar QED is invariant, the whole scalar QED is invariant
under the local U (1) phase transformation. Let’s now get No-

ether’s current for this. The transformations are

¢ o ¢ =elE0g, g o ¢ = emEO A, S A4l = 4, —Led,a (4.22)

The variation in the Lagrangian is:
oL oL aL aL Lo aL
L = 5500 +55-06 +W‘5(6M) oD S0u) + G154+ 5y 90:4)(4.23)

Integrating the derivative-variation terms by parts at the
density level and collecting total derivatives, this separates the
pieces that are proportional to the equations of motion from a
total divergence:

.= (5~ i) 20+ (5

+a[

~usgong ) 90+ (5 + 0ur ) o4, (4.24)

8¢+ - F‘“’(SAV]

o7 00+ 3 0%

Now to specialize the variations to the infinitesimal local

U(1) phase:

69 = ia(x), 69" = —ialP", 54, =—0,a(x). (425)

(For small @ we use e "= ia . )

Because the Lagrangian is gauge invariant, 6§ = 0 for these
variations. Next, we take the global subset of the symmetry by
setting @ constant, so 84, = 0. Substituting (4.24) into (4.23)
and using 64, = 0. gives:

0= (G at597) o+ (75 3t ) e+ e (e s )] (426)

The two parenthetical factors multiplying ia® and (-iad*)
are exactly the left-hand sides of the Euler-Lagrange equations
for @ and @*. When the fields satisty their equations of motion,
those factors will vanish. Dropping that term and removing the
overall constant a leads to the local continuity equation:

aL daL
a i — " =0 (4.27)
(#55 % 56)
Therefore, the conserved Noether current is:
alL, aL
~ i¢* . a ' =0,
o) P aeey M 6

Finally, using the known expressions for the derivative terms

in scalar QED

= (D*¢)", = (D*¢)
To write the current in the familiar form,
JH=i(p(D ) — "D ), 9, J* =0 (4.30)

B Discussion

Noether’s theorem is one of the most useful tools for theo-
retical physics. It has applications wherever there is continuous
symmetry in any physical system. Whether the system is lo-
cal or isolated, the conservation laws that are derived from the
symmetry and valid exactly and can be easily applied to simpli-
fy problems in both classical and quantum physics.

The importance of Noether’s theorem extends even further
when we consider different frames of reference. The laws of
physics must be invariant in different frames. This requires the
introduction of extra structure to maintain that invariance. For
example, in non-inertial frames, fictitious forces like centrifugal
or Coriolis forces are introduced to make sure that Newton's
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laws are valid in these systems. Similarly, in particle physics,
gauge fields are introduced to maintain invariance under lo-
cal symmetries. Specifically, invariance under local phase shifts
in the quantum field of the electron involves introducing the
electromagnetic field, which naturally couples to the electric
charge.

This principle of extra fields arising to maintain local sym-
metries gives us valuable insight into reality. They hint at the
existence of fundamental interactions like electromagnetism,
and the reason there is conservation of electric charge and
the existence of light. This principle is also at the bedrock of
particle physics. Quarks within protons and neutrons follow
a symmetry based on the number three, while discrete sym-
metries such as charge conjugation (C), parity (P), and time
reversal (T) give us valuable insight into understanding parti-
cles and anti-particles.

We must, however, be careful not to overextend the theorem
into areas it can't. To point to its biggest limitation, the theorem
breaks down when there are only discrete symmetries or no
symmetry at all. An example of this is where spacetime itself is
dynamical. In that case, the underlying symmetries don’t hold
globally. We see this with the expansion of the universe, which
breaks perfect time-translation symmetry. As a result, energy
isn’'t conserved at the cosmic level. This is evidence when we
look at the redshift of light, where photons lose energy as their
wavelengths stretch with the expanding universe. Similarly, the
universe also doesn’t have perfect spatial symmetry because of
the unequal distribution of stars, planets, and other structures.
This implies that we can’t apply conservation of momentum
globally.

Research around this subject is constantly being done to find
out if there are more fundamental symmetries. One popular
domain of research is Supersymmetry, which suggests that
there might be a deep symmetry between matter particles and
force-carrying particles, pointing to a unified framework for
the forces of our universe. Whether or not these symmetries
hold in nature is still under research, but symmetries and No-
ether’s theorem are at the forefront of shaping modern physics.

® Conclusion

As we have shown, Noether’s theorem is applicable across
many systems in physics. Even in cases such as the gauge
symmetry, where there is a redundancy of information, the
conserved quantity had to be necessarily true for the Lagrang-
ian to be invariant.

There were many limitations to this paper. As mentioned in
the methods, there was a limitation in deriving the Lagrang-
ian of the complex systems. Moreover, many specific cases and
extensions of Noether’s theorem have not been considered.
Noether’s theorem assumes that any symmetry under consider-
ation must be continuous. Even though no conserved quantity
is derived from such discrete symmetries, they often impose
selection rules in quantum systems, which limit possible tran-
sitions or interactions. There are many examples, such as Parity
Symmetry, Time Reversal Symmetry, and Charge Conjugation
Symmetry.

While Noether’s theorem and its applications have been well
established, there is still much ongoing research concerning
its implications and reach. As discussed, there is still ongoing
research about spontaneous symmetry breaking. Research con-
tinues into how symmetries can be spontaneously broken in
various physical systems, which leads to phenomena such as
the Higgs mechanism. There can also be extensions in the for-
malism of discrete symmetries, which do not lead to conserved
quantities but can have many physical implications. Of course,
there are important considerations that need to be made, such
as to what extent Noether’s theorem can be applied outside of
physics, but that is a question for further research.
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