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ABSTRACT: China's electric vehicle (EV') industry has experienced rapid growth in recent years, becoming a significant driver
of economic and technological advancements. Lifecycle management of EV batteries is now a pressing issue due to environmental
concerns. This paper investigates this problem, focusing on the dual strategy of recycling and cascade utilization. Using extensive
real-world data, models are estimated to predict EV batteries’ performance and lifespan under practical conditions. These capacity
degradation models are then applied to forecast the future growth of EV and non-electric vehicle (non-EV) battery volumes and
the capacity structure of the battery population. Furthermore, a mathematical model is formulated to describe the flow of batteries
in the EV and non-EV population, capturing EV battery transitions through cascade utilization to non-EV uses and to recycling.
An optimization problem is then proposed to maximize social utility and to guide decisions on cascade utilization.
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B Introduction

Over the past five years, Electric Vehicles (EVs) have seen
rapid growth globally. In 2024, EV sales exceeded 17 million,
accounting for over 20% of all vehicle sales. The European
Union, the United States, and China remain the three major
markets, and Asia and Latin America are important emerging
markets that see rapid growth in EV sales.!

The forecast for 2025 shows that EV sales are expected to
grow further to exceed 20 million worldwide. The driving force
for such growth varies in different markets. For example, in
China, it is policy incentives, such as a trade-in scheme where
higher rebate is offered for the purchase of an EV purchase
than that the purchase of a conventional vehicle, as well as
infrastructure development, and domestic manufacturing ca-
pacity, that will push share of EV sales up to 60%; in Europe,
it is the emission reduction target that will drive up the shares
of zero-emission EVs to 25%; and in the United States, sales
are projected to raise slightly to 11% due to change in policy
direction.?

Driven mostly by the increase in EV sales, in 2024, battery
production that satisfies both EV demand and storage applica-
tions reached the 1TWh milestone. China remains the largest
source of demand at 60% of global demand, European Union
and the United States at 13%.?

Recognizing these international differences, this paper fo-
cuses on the Chinese context, examining optimal recycling and
cascade utilization strategies tailored to its unique market con-
ditions and policy environment.

Beyond economic benefits, the widespread adoption of EV's
also brings substantial environmental advantages. Electrifica-
tion of transportation is seen as a pivotal strategy to reduce
dependence on petroleum-based fuels and to mitigate urban
air pollution.* EVs, with zero tailpipe emissions, contribute to

improved air quality and reduced greenhouse gas emissions
when powered by low-carbon energy sources.

However, the rapid expansion of the EV market also brings
new challenges, particularly in the management of retired
batteries. With the rapid development of EVs, the number
of retired batteries is expected to surge in the coming years.
According to Wu e al.,* the volume of retired power batteries
is projected to rise from 112,000 tonnes in 2020 to 708,000
tonnes by 2030. The substantial increase in retired batteries
underscores the urgent need for efficient reuse and recycling
strategies. Improper disposal of batteries can lead to severe en-
vironmental and safety risks. For instance, leaked heavy metals
from improperly disposed batteries can contaminate water and
soil, and pose threats to ecosystems and human health through
bioaccumulation in the food chain.® Additionally, improper
dismantling of EV batteries could pose significant safety con-
cerns, such as fire or explosion.®

Typically, there are two main strategies for handling retired
EV batteries: recycling and cascade utilization. Recycling in-
volves dismantling batteries to reclaim valuable materials such
as lithium, cobalt, and nickel, which can be used to manufacture
new batteries. In other words, recycling aims to convert pow-
er batteries into various raw materials with minimal pollution.
Cascade utilization, on the other hand, repurposes batteries for
secondary applications after their initial use as EV batteries.
This strategy extends the lifecycle of EV batteries and miti-
gates the environmental impact of battery disposal. Cascade
utilization includes applications in energy storage systems,’
backup for base stations,® grid support services,’ and renewable
energy integration,' etc. According to the report by the China
Electricity Council," from 2019 to 2022, storage demand grew
from 466 MWh to 5,498 MWHh for renewable energy stations,
from 523 MWh to 1,812 MWh for the power network, and
from 119 MWh to 758 MWh for commercial demand. The
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rapid growth demonstrates the potential need for cascade-uti-
lized EV batteries.

While recycling is a straightforward solution, it fails to fully
harness the capacity of EV batteries. From the perspective of
social welfare, cascade utilization is a superior strategy as it
enables maximal utilization of battery capacities. However, the
proper planning, management, and operations of cascade utili-
zation remain challenging.

In this paper, we analyze and explore issues related to the life
cycle management of EV batteries, including: when to recycle
and when to cascade utilize? How to balance the two strate-
gies? How to develop them in the long term?

We first investigate the capacity degradation pattern for
individual batteries to lay the foundation for our study. The
modeling utilizes two publicly available datasets to provide
insights into the typical lifespan and performance decline of
EV batteries. The analysis is then extended from individual
batteries to the entire battery population, depicting its ca-
pacity distribution at any point in time. A cascade utilization
flow model is introduced to capture the transition of batteries
from EV to non-Electric Vehicle (non-EV') markets, and their
eventual flow to recyclers. Based on the current state of the EV
and the cascade utilization market, we project future growth
in battery volumes. It shows that the number of retired EV
batteries will be enormous, with only a small fraction absorbed
by the current cascade utilization market, thus highlighting a
significant underutilization of this potential strategy.

In summary, this paper provides a quantitative analysis of
the economic and policy factors influencing the cascade utili-
zation of EV batteries. Through detailed modeling of battery
degradation patterns, market projections, and the effects of
government subsidies, this paper aims to inform and guide
policymakers and industry stakeholders in making strategic
decisions that enhance the sustainability and economic viabil-
ity of EV battery lifecycle management.

B Literature Review

The related literature mainly consists of research in two ar-
eas: the pattern of battery capacity degradation and multi-party
relationships related to the recycling of batteries.

Capacity Degradation of Batteries:

Battery capacity degradation is a significant concern for the
sustainability and performance of EVs. Different approaches
have been used in modeling battery degradation. The first is by
simulating the underlying physical degradation mechanisms.
Edge et al. provide a comprehensive overview of lithium-ion
battery degradation mechanisms.”> They discuss the cou-
pling between different degradation processes and propose a
semi-empirical model that integrates physical and chemical
degradation mechanisms. This model aims to predict capac-
ity fade and enhance battery management systems. Luo ez al.
present a detailed study on capacity degradation and aging
mechanisms in lithium-ion batteries under various operating
conditions.” Their empirical model considers factors such as
the solid electrolyte interphase (SEI) growth, lithium plating,

and particle cracking to predict battery lifespan under differ-
ent depths of discharge and temperatures.

Another approach is to employ data-driven methods to
model the degradation process of batteries. Zhang ez al. built
an accurate battery forecasting system based on electrochemi-
cal impedance spectroscopy.™ A Gaussian process model takes
the entire collected spectrum as input and automatically de-
termines which spectral features better predict degradation.
Huang ez al. propose a novel charging encoder that alternates
between a Temporal Convolutional Network and a Bidirection-
al Gated Recurrent Unit to capture local temporal information
and long-term dependencies related to the state of capacity
(SOC) and the state of health (SOH) during charging.” The
proposed framework enables a unified joint estimation of the
two variables, substantially enhancing efficiency.

Recycling of EV Batteries:

As the battery recycling and cascade utilization market
expands, more research efforts start to focus on the deci-
sion-making relationship between the various parties in this
context.

Some of them focus on the strategy analysis of different
roles in the supply chain, including pricing, contracts, and ben-
efit distribution. Gu ez al. propose a closed-loop supply chain
model in which EV batteries can be reused, such as for ener-
gy storage, before being recycled.’® They analyze the optimal
pricing strategy between the manufacturer and remanufacturer
to optimize the total profit in the whole supply chain. Zhu and
Yu study the effect of adverse selection and moral hazards in
the closed-loop supply chain of EV batteries based on Infor-
mation Screening Models in the principal-agent theory."”

Some papers examine the impact of government policies.
Gu et al. look for the optimal production strategy when mar-
ket demand is uncertain under government subsidy.’® It is
concluded that the optimal production quantity and expect-
ed utility increase with the subsidy. Guan and Hou study the
equilibrium strategy of the EV battery supply chain under the
dual mechanism of government subsidy and cost-sharing and
find that the utility of cascade utilization efforts will increase
with the increase of government subsidies."

In this paper, the focus is not on the benefits and decisions
of participants at the micro level; instead, it focuses on the cir-
culation of batteries from a macro perspective and hopes to
optimize social welfare through macro-control measures such
as cascade utilization standards.

B Methods

Electric Vebicle Battery Capacity Degradation Model:

To develop effective recycling and cascade utilization strat-
egies, it is essential to understand the mechanisms behind the
capacity degradation of EV batteries over time. In this sec-
tion, we propose an EV battery capacity degradation model to
help accurately predict their lifespan and performance under
real-world conditions.

Battery capacity refers to the total amount of electric charge
a battery can store, quantified as a real number and measured
in ampere-hours (Ah). Generally, a larger battery capacity al-
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lows for more energy storage, enabling EVs to travel greater
distances on a single charge. It serves as a crucial indicator of
a battery's health status, with higher values representing better
overall performance.

The performance of EV batteries inevitably degrades with
increased usage. This degradation is primarily reflected in the
gradual decline of battery capacity. Over time, this reduction
in capacity diminishes the battery's ability to store and deliver
energy effectively. This degradation also forms the basis for
cascade utilization. As EV batteries degrade over time, they
eventually become unsuitable as power batteries but retain
value for other applications. The timing of their retirement
is critical to determining their remaining utility in secondary
applications.

To characterize the overall condition of EV batteries, it is
necessary to accurately describe the capacity degradation of
EV batteries. Some studies have examined the performance of
batteries under laboratory conditions. However, in real-world
scenarios, the use of EV batteries is far more complex than
under laboratory testing conditions. EV batteries are affect-
ed by numerous complex real-world factors, such as unstable
voltage, random charging times, EV owners' charging prefer-
ences (charging only when nearly depleted or frequent partial
charging), constantly changing ambient temperature, and
more. These factors can render the battery degradation curves
obtained under laboratory conditions invalid.

Therefore, to accurately model the capacity degradation of
EV batteries, it is essential to build the model with extensive
real-world data, which ultimately helps capture the most fun-
damental degradation pattern.

In our study, two publicly available EV battery datasets
are utilized to model the degradation curve and perform
corresponding statistical analysis. Both datasets comprise pa-
rameters of EV batteries under real-world conditions.

Dataset A provides long-term charging data from 20 com-
mercial EVs with identical battery systems, each monitored
over approximately 29 months.?® The data were collected
during charging via CAN communication at regular intervals
and captured key patterns relevant to real-world battery health
evaluation. The metric for battery usage is the length of time
in service, which is reasonable given that commercial EV's are
in continuous operation.

Dataset B offers a large-scale time-series capacity data of
191 EVs, including over 1.2 million charging sessions from
vehicles across three manufacturers.”® Each session records
multiple charging-related parameters at fixed intervals, in-
cluding voltage, current, temperature, capacity, and estimated
SOC. The dataset is designed to facilitate deep learning re-
search on charging behavior, battery degradation, safety, and
energy management in real-world settings. The usage metric
in this dataset is the odometer reading.

In both datasets, each EV has an average of over 2,000 data
points of battery capacity. An overview of these datasets is
shown in Table 1.

Table 1: Overview of two EV battery datasets: dataset A from 20 commercial
EVs monitored over approximately 29 months, dataset B from 191 EVs with
over 1.2 million charging sessions.

Dataset #EVs  #Avg. Points per EV #Total Points Usage Metric
Dataset A2 20 ~2,696 53,927 Time in service (day)
Dataset B?' 191 ~3,068 585,922 mileage (km)

Let C denote the capacity of EV batteries, and x denote the
usage metric. A two-step process is used to investigate the re-
lationship between C and wx. First, the correlation coefficient
between C and « is calculated to check if their correlation is
indeed negative, as intuitively expected. The linear regression
model is then estimated:

C=fx+a (1)

Table 2: Correlation and linear regression analysis between battery capacity
C and usage metrics x. A strong negative correlation is found in both datasets.
The linear regression models are C = -2.228 x 10 * Time in Service + 132.573
for Dataset A, and C = -2.554 x 10° * Mileage + 43.308 for Dataset B.

Correlation

Dataset between C and x Parameter Estimate 95% Confidence Interval
-2.247 x 102
2.228x 102 [ .
Dataset A —0.709 B -2.209 x 102]
a 132.573 * [ 132.475, 132.671]
-2.561x10°
2.554%10°* L .
Dataset B 0695 ’ 2548 x10%)
a 43.308 * [43.301, 43.315]

Notes: * indicates significance at the p< 0.001 level.

The following observations are made based on the results
shown in Table 2:

(1) C and x exhibit a strong negative correlation in both
datasets (-0.709 for Dataset A and -0.695 for Dataset B),
consistent with the well-known fact that battery capacity de-
creases with increased usage.

(2) Recall the substantial differences between the two data-
sets in terms of battery types, EV models, data collection
conditions, and usage metrics. Note that both datasets result in
correlation coefficients close to -0.7, which indicates that the
rate of battery capacity degradation with usage is consistent.

(3) Data points contain much noise, highlighting the diffi-
culty of accurately predicting battery capacity at the individual
level under real-world conditions. The considerable noise may
be attributed to complex environmental factors that lead to
a wide range of data fluctuations. This suggests that a large
number of samples (data points) is necessary to effectively mit-
igate the impact of noise on parameter estimation.

(4) The 95% confidence intervals for the parameters are very
narrow, indicating a low degree of uncertainty in the parameter
estimates. We also show the curve fitting of Datasets A and B
in Figures 1 and 2, respectively.
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Figure 1: Battery capacity vs number of days in service in Dataset A: scatter

plot in blue and linear regression line C = -2.228 x 102 * Time in Service +

132.573 in red.
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Figure 2: Battery capacity vs mileage in Dataset B: scatter plot in blue and
linear regression line C = -2.554 x 10° * Mileage + 43.308 in dark green.

It is observed from Figures 1 and 2 that the capacity of EV
batteries decreases linearly with increased usage. These linear
models form the basis for our discussion on the cascade utili-
zation flow model in the next section.

Optimization of Cascade Utilization for Social Welfare:

This subsection explores how the government could manage
the cascade utilization to maximize social welfare. The follow-
ing notations are used in subsequent discussions.

D/E V) and Dt(N on-EV). demand for batteries by the EV and
non-EV population at time step #, respectively.

Bt(EV ) and Bt(Nm_E V). the number of new batteries that
need to be produced for the EV and non-EV population at
time step #, respectively.

1, ;(E V and I, ,gv’m_E : the number of batteries in the EV and
non-EV population at time step #, respectively.

I C(EV) and It)/Nm_EV) : the number of batteries with ca-
pacity ¢ in the EV and non-EV population at time step ¢,
respectively.

rt(E V) and r/N on-EV). the number of batteries to be recycled

from the EV and non-EV population at time step #, respec-
tively.

sz the number of batteries cascaded from the EV population
to the non-EV population at time step #.

Figure 3 illustrates the flow of EV and non-EV batteries.
The demand for EV batteries (Dt(E V) ), is satisfied by batter-
ies that are currently in the EV population and the number of
new batteries produced (B[(E V) ). Due to capacity degradation,
batteries will no longer meet the capacity requirements of the
EV population after a period of usage. Some (rAF")) need to
be directly recycled, while others (s;) still hold value for cascade
utilization in the non-EV Eo}pulation. Therefore, demand for
non-EV batteries (Dt(N om-EV)) is satisfied by current batteries
in the non-EV population, new production for non-EV usage
(Bt(N‘m'E V)), and batteries cascaded from the EV population
(s). Batteries in the non-EV poBulation also degrade, and
some need to be recycled (rt(N””'E )). By knowing the state at
each timestamp, the evolution of the battery population can be
captured starting from # = 0 onward.

lB(Non-EV)
t

lB(EV)
t

EV Population s Non-EV Population
t
Demand: Dt(EV) Demand: DgND“'EV)
TiEW TgNon-EV)

Recycled Material

Figure 3: Flow of batteries in the market at time step £ The demand for
EV batteries (D/E V)) is satisfied by batteries that are currentl}/ in the EV
population and the number of new batteries produced (D/EV)). Demand
for non-EV batteries (Dt(Non_ ) is satisfied by current batteries in the
non-EV population, new production for non-EV usage (B,(N””_EV)), and
batteries cascade utilized from the EV population (s,). Some batteries (rt(E V) R
rNon-EV)) are recycled.

In the process of cascade utilization of EV batteries, gov-
ernment intervention is often necessary to maximize social
welfare. Government policies and regulations can provide
essential guidelines for the proper management of battery
resources, ensure environmental protection, and promote sus-
tainable economic development. A better understanding of the
dynamics between cascade utilization and recycling of batteries
will guide more effective government policies.

Let ¢, denote the initial capacity of a battery, and ¢ the re-
cycling threshold for EV batteries. Similarly, ¢ is the threshold
for cascade utilization, and ¢ > cz. For all EV batteries with a
capacity of ¢, we stipulate that no more than a proportion ¢ of
them will be cascade utilized, while the rest will continue to be
used in the EV market until they are recycled. In this process,
the initial capacity ¢, and recycle capacity ¢z are determined
by the characteristics of batteries, while the cascade capacity ¢s
and cascade ratio ¢ can be adjusted by the government. These
standards can directly affect the flow of batteries, including
production, supply, utilization, and recycling. Therefore, we
want to explore how the standards should be developed to en-
hance the overall societal benefits.
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Battery Dynamics in the EV Population:

The batteries used in the EV population gradually degrade
in daily driving and end up in the non-EV population or are
recycled. To accurately model the battery flow in the EV pop-
ulation, let dc be the capacity degraded during one time step,
and I;’C(EV) be the number of batteries with capacity ¢ at time
step £ At each time step # the number of batteries with capac-
ity ¢, in the EV population is equal to the number of batteries
produced for the EV population at time step #

[EV) _ pEV)

t,co t (2)

The batteries with capacity ¢s + éc in the EV population
will degrade to capacity cs, which is the capacity threshold for
cascade utilization. Considering that not all batteries can be
collected for cascade utilization, we assume only a proportion
g of them can be transferred into the non-EV population. Fur-
thermore, the demand for new non-EV batteries also restricts
the number of batteries transferred. Therefore, the batteries
transferred from the EV population to the non-EV population
can be expressed as:

(EV)
t,cg+dc

s, = min{/ - g, max{0, XN TEV) _ j(Nen—EVoypy (3)
and the number of batteries with capacity ¢s in the EV popula-
tion at time step 7 + 1 is equal to the number of batteries that

are not transferred into the non-EV population,

(EV) _ ;(EV)
It+1,cs - It,c_g+t$c = St (4)
When batteries with capacity ¢z + 6c degraded to cg, they are
forced to be recycled,

(EV) _ ;(EV)
rt - It,cR+5c

©)
Then, the number of batteries with capacity ¢z in the EV
population at time step # becomes 0,

10 =0

(6)

For batteries in other capacity ranges, the number of batter-
ies with capacity ¢ in the EV population at time 7+ 1 is equal to
the number of batteries with capacity ¢ + éc in EV users at time
step £ To be specific, this applies to the capacity ranges cs + 8¢
<c<¢-68cand g + 8c < ¢ < ¢5 — 6c. This degradation process
can be expressed as:

t+1c = lteiscr forcs +8c < c<cy—dcandcp +6c < c < ¢g — éc

@)

At time step ¢, the total number of batteries in EV users
I/E V) is the sum of the batteries with capacities ranging from
¢ to ¢g:

co
EV EV
B

c=cR

(8)

Then for each time step # the total number of batteries in
EV users at time step # should be no less than the battery de-
mand of the EV population at time step #

Equivalently, the number of batteries produced for the EV
population can be expressed as:
B¥"

= max{D(tEV) - I(tEV), 0}

(10)

Battery Dynamics in the Non-EV Population:

The batteries used in the non-EV population are either
batteries produced for non-EV usage or are from the EV pop-
ulation. Non-EV batteries can be used for energy storage and
power supply for communication base stations, power stations,
and in other commercial settings. These batteries will also
gradually degrade over time and end up being recycled. We
assume that they follow the same degradation pattern as the
EV batteries. Similar to the modeling of the EV population,
let I;(N m-EV) be the number of batteries in the non-EV pop-
ulation with capacity ¢ at time step # and dc be the capacity
degraded within one time step. The number of batteries with
capacity ¢ in the non-EV population at time t is equal to the
number of batteries produced for the non-EV population at
time step t,

IEJ'\Z)H —EV) - Bf(Nun —EV)

(11)

The number of batteries with capacity cs at time step # + 1
is equal to the number of batteries with capacity cs + ¢ at time
step # plus the number of batteries transferred from the EV
population s,

I(Non —EV) _ I(Non —EV)

t+1l,cs — Ytes+dc + 5

(12)
When batteries with capacity cz + 6c degraded to the stan-
dard non-EV battery recycle capacity cz, they are recycled,

(Non—EV) __ I(Nun—EV)
% — Yt,ep+be

(13)
The number of batteries with capacity cx at time step #is 0,
indicating that all batteries of this capacity are recycled,

(Non—EV) __
]t.CR =0

(14)

Batteries of other capacities follow a normal degradation,
which means that the number of batteries with capacity ¢ at
time # + 1 is equal to the number of batteries with capacity ¢ +
Oc at time 7,

I(Nnn —EV) — I(Non —EV)

i terse | forcs+8c<c<cy—dcandeg +8c<c<cs—bc (15)

At time step # the total number of batteries J, /N on-EV) is the
sum of the batteries with capacities ranging from ¢z to ¢,

co
IE,NUTL_EV) — Z I(tI‘VCGn—EV)

c=cp

(16)
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The total number of batteries at time step #should be able to
cover the demand for batteries at time step 7,

IENon —EV) > DEND" —EV)

17)

Equivalently, the batteries to be produced for the non-EV
population can be expressed as

BENon—EV) — maX{D(tNon—EV) _ I(tNon—EV) _ St,O}

(18)

Social Welfare Modeling:

With the formulation of the battery dynamics in the EV and
non-EV population, we further formulate the social welfare of
this process. In this context, social welfare is the benefits that
battery usage brings to society. For example, using EV batteries
with higher average capacity can improve the overall efficien-
cy of EV usage, thereby enhancing the efficiency of the entire
transportation system and contributing to greater social wel-
fare. Conversely, lower capacity reduces efficiency, leading to
lower social welfare. We assume the social welfare brought by
the batteries used in the EV and non-EV populations is related
to the mean capacity in each population. The mean capacities
can be calculated as:

o
= Z 1 ¢/ 1

te (19)
C=CR
€
Ct(Non —EV) _ Z Igﬁan —EV) C/I(tNon —EV) (20)

c=cp

We use a utility function f (EV) to characterize the social
welfare within the EV population. For EV owners, when the
degradation starts from a brand-new battery, the major effect
is the gradual reduction in range. However, as battery ca-
pacity continues to degrade, some other issues become more
apparent, including deterioration in acceleration and braking
performance, slowing down of charging speeds, and a greater
failure rate of the vehicle’s information systems.?* Therefore,
we propose to employ a non-linear utility function f (EV) of
mean EV capacity to measure the unit social welfare of the EV
population:

key(c — cg),ifcg < c < BV
ke (cBY — cg) + ky(c — cBV),if BV < c < ¢

@ ={ 1)
where %, < £; are the slopes for the piece-wise linear utility
function, and &£V is the threshold where the slope changes.
Similarly, the unit social welfare of the non-EV population can
also be measured by a non-linear function:

FNon=EV) () — { ks(c —cg),ifcg < c < cNom—EV
k3(cNtm —EV _ CR) + k4(C — CN[m—EV)‘ if ¢cNon—EV <c<g

(22)

where %, < 4; are slopes of the utility function f (Non-EV) ,
and M EV is the threshold where the slope changes. The
non-EV population often has lower requirements on batter-
ies; therefore, it is reasonable to assume that Nen=EV o EV and
k.«(CNM_EV— )2k (CEV— Cr)-

Based on the unit social welfare and the battery ownership in
the EV and non-EV population, their total social welfare can
be respectively expressed as:

u) = fEN () [ E (23)

U.E(NOH_EV) — f(Ngnfgv)(Ct(Nun—EV)) . I(tNon—EV)

24)

We assume that new batteries are manufactured with unit
cost ¢,,. With the number of batteries produced for both EV
and non-EV E{;Opulations, the related social welfare at time step
tis - ¢, (B/ )4 B/NO”_EV)).

To make EV batteries available for non-EV utilization, the
following costs must be considered.” First, the batteries need
to be dismantled, which requires labor and equipment costs.
Before entering the non-EV population, batteries need to
be inspected to determine if they meet the non-EV utiliza-
tion standards based on their remaining life and performance.
Batteries may also need to be repackaged or remanufactured
before entering the cascade utilization market to ensure safe
transportation and storage. We denote the unit transfer cost by
ks, which covers all the costs mentioned above, and the related
social welfare in time step t can be expressed as - £; .

For recycling end-of-life batteries, there are also several costs
to be considered. The end-of-life batteries often need to be
centralized for further processing because of the potential haz-
ards and pollution that can result from the process. Therefore,
the logistics cost incurred during battery collection and trans-
portation is not negligible. The collected end-of-life batteries
also need to be sorted and pre-processed, which means labor
costs, the cost of sorting equipment, and the cost of preliminary
discharge and disassembly of batteries. Then these batteries are
processed using chemical, mechanical, and thermal treatment
methods, which incur costs for equipment usage, chemical
reagents, energy consumption, and labor. These processes are
often accompanied by useless or even harmful by-products, like
waste liquids, residues, and gases. The cost of handling those
hazardous substances should also be considered. In our formu-
lation, we denote the unit battery recycle cost by kr to account
for all the costs mentioned above in the recycling process. Since
the batteries can be recycled from the EV and non-EV pop-
ulation, the related social welfare at time step t is expressed as
— 2 (7 (EV) . 7 (Non—EV))

Based on the above formulation of the EV and non-EV
battery dynamics and social welfare, the decision-making of
the government can be advised by the following optimization
problem:

1 _ - -
‘Z;?;‘Fz ufEV) 4 quon B ks — kr(rt(Ev) + Tt(Non EV)) —cn (Bt(EV) + Bt(Nan EV)) (25)
t

Subject to: EV battery dynamics in Egs. (2-8), and (10),
Non-EV battery dynamics in Eqgs. (11-16), and (18),
Capacity calculation in Eqs. (19) and (20).

Social welfare (u; (EV) ) Uy (Non-EV)) is calculated using Eqs
(23) and (24). Recall that the parameter ¢ is the maximum cas-
cade ratio of batteries, and the actual number of batteries that
can be transferred to the non-EV population is also restricted

DOI: 10.36838/v8i2.50

55



ijhighschoolresearch.org

by the demand of the non-EV population. Intuitively speaking,
a lower ¢ limits the cascade utilization of batteries. Therefore,
if'a battery can bring more social utility after entering the non-
EV population, the total social welfare would increase with g.
On the other hand, if a battery can bring more social utility
when staying in the EV population, the total social welfare may
decrease with a larger ¢, because a smaller ¢ can keep more bat-
teries in the EV population and result in more social welfare.
The effect of ¢5 is much more complex. From the perspec-
tive of the life cycle of an individual battery, the manufacturing
cost and the recycling cost are fixed and not influenced by ¢;.
If the battery stays in the EV population until recycled, social
welfare is not influenced by ¢s. If a battery is transferred to the
non-EV population at capacity cs, a higher ¢; generates greater
social welfare in the non-EV population compared to the EV
population, as indicated by our formulation of the functions
f (EV) (c) and £ (Non-EV)) (¢), along with the associated parameter
requirements. If the difference in social welfare between the
EV and non-EV population exceeds the transfer cost ks, the
more batteries transferred, the more social welfare is achieved.
A higher ¢s means a battery can serve for a longer time in the
non-EV population until recycled, which lowers the demand
of the non-EV population, and results in a reduction in the vol-
ume of batteries transferred. In addition, a higher ¢5 may also
accelerate the replacement of batteries in the EV population,
which incurs more cost for the production of new batteries.
These effects we discussed are also highly dependent on the
parameter settings and the real-world demand and capacity
distribution. Therefore, the overall effect of ¢s is hard to predict.

Model Assumptions and Limitations:

Before we discuss computational results, it should be noted
that several assumptions are made in this study. First, the bat-
tery degradation model assumes linear capacity degradation,
which may differ from actual nonlinear degradation patterns
influenced by varying operational conditions. Second, the bat-
tery population is treated as homogeneous despite variations
in battery chemistries and usage scenarios. Finally, our pre-
dictions rely on logistic growth modeling of market demand,
which may not fully capture market uncertainties or disruptive
technological changes. These limitations should be considered
when interpreting the results.

B Result and Discussion

Estimated Growth of EV and Non-EV Batteries:

WEe collected data on EV ownership in the Chinese market
from 2017 to 2023.2* Based on this data, we estimate the fu-
ture growth of the EV market. Three models are selected for
this estimation: the exponential model, the quadratic function
model, and the logistic growth model, with mean squared er-
ror (MSE) used as the evaluation metric. Figure 4 shows the
fitting performance of these three models, with time in the
horizontal axis, where a real-valued interval [, i+1) represents
Year 7, and the number of EVs in the vertical axis.

120000

® Data

—— Polynomial Degree 2 (MSE: 454550.34)
—— Exponential Model (MSE: 59747.96)
—— Logistic Growth Model (MSE: 167429.33)
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Figure 4: Estimate of EV growth in China based on data from 2017-2023.
Three models - exponential, quadratic function, and logistic growth — are
estimated. Mean squared error (MSE) for each model is included as a measure
of fitness. Since future growth cannot increase indefinitely as predicted in
the exponential model and the quadratic function model, the logistic growth
model is selected as the preferred model.

Although the exponential model provides the best fit for
the 2017-2023 data, it should be noted that using it to predict
future growth could be problematic since the number of EVs
cannot grow indefinitely as predicted in the exponential mod-
el and the quadratic function model. Furthermore, the logistic
growth model exhibits low fitting errors, indicating a decent
fit. It is also noteworthy that, according to our proposed mod-
el, EV ownership will reach approximately 100 million by the
end of 2030. This prediction aligns with the forecast made by
leading experts, which underscores the validity and reliability
of our proposed model.”

According to EVChina, the most common cascade uses of
EV batteries are for energy storage in communication base
stations, renewable energy storage, and public facility energy
storage.® We aggregate the demand data for these three appli-
cations from 2018 to 2022 to obtain the overall demand data
for the cascade use. Based on the data, we fit a logistic growth
model for the demand of non-EV batteries (note that this
amount is calculated based on the capacity of EV batteries).
Figure 5 shows the fitting result. It can be observed that the
scale of electricity usage for these non-EV batteries experienc-
es a period of rapid growth, followed by a slowdown in growth,
and eventually stabilizes around 2035.

The estimated numbers of EV and non-EV batteries are
used as the initial conditions, Dl(EV) Dl(N’m_EV) , in the
cascade flow model.
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Figure 5: Logistic growth curve for non-EV batteries in China. The logistic
growth model is estimated using data from 2018-2022 that cover energy
storage in communication base stations, renewable storage, and public facility
storage.
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Macro Perspective on Cascade Utilization Flow Model:

The evolution of battery population is simulated using the
flow model, including EV battery dynamics in Egs. (2-8), and
(10), non-EV battery dynamics in Eqgs. (11-16), and (18), and
capacity calculation in Egs. (19) and (20). The corresponding
social welfare (ut(E V) , u/ on-EV) ) is calculated using Eqs. (23-
25).

The parameter settings for the simulation study are listed in
Table 3. More specifically, the parameters for time are based
on our defined study period, parameters for battery degrada-
tion are from the empirical analysis discussed in the Electric
Vehicle Battery Capacity Degradation Model section of this
paper, cost-related parameters are adopted using a normaliza-
tion approach based on the conceptual frameworks in related
studies,'®!” and the social utility parameters are based on the
key contribution of our model, designed to capture the pro-
posed non-linear welfare effects of battery performance.’®
Table 3: Parameter settings for the cascade utilization flow model. The

battery population evolution is simulated for 12 years (144 time steps; each
time step is a month).

Parameters Values
T 144 (12 years)
ks 0.3
kr 0.01
Cm 1
Co 1
& 1/480
- 0.8
ki 8
k2 1

CNOVI-EV 0.8

k3 40
kx 5/7

Figure 6 shows the total number of batteries, as well as the
changes in battery capacity structure. We partition the capac-
ity value of [0.7, 1] into 12 equal intervals and mark intervals
with different colors. For EV batteries, the ratio of batteries of
high capacity (capacity 0.85 ~ 1) will first increase and then de-
crease. This is because the number of EV batteries will initially
undergo a rapid growth phase, during which a large number of
new batteries with high capacity will enter the population, in-
creasing their proportion. As growth slows, the number of new
batteries entering the population each period will decrease.
Additionally, the capacity of batteries from the previous high-
growth phase will gradually degrade, leading to an increase in
the proportion of low-capacity batteries (capacity 0.7 ~ 0.85).

In the initial phase (time step 1 to 40), the proportion of
high-density batteries in non-EVs is rising. This is because
there are too few EV batteries available for cascade utiliza-
tion to meet the non-EV demand at this stage. Consequently,
additional new batteries need to be produced for non-EV ap-

plications. These high-capacity new batteries increase their
proportion in the population. After this initial phase, the over-
all capacity within the non-EV population rapidly declines. By
the end of the simulation, almost all non-EV batteries orig-
inate from the cascade utilization of EV batteries. This shift
is due to the rapid growth in EV batteries, which significantly
increases the number of EV batteries available for cascade uti-
lization, adequately meeting the non-EV electricity demand.

100
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o
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Time
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Figure 6: Change in EV and non-EV battery populations and their capacity
distributions over time. The capacity range [0.7, 1] is divided into 12 equal
intervals, represented by different colors. In the EV battery population, the
proportion of high capacity (capacity > 0.85) batteries will increase initially
and then decrease, proportion of low capacity (capacity between 0.7 and 0.85)
batteries will increase due to capacity degradation over time. In the non-EV
population, after an initial phase with a high proportion of high-capacity
batteries, the overall capacity rapidly declines.

Deeper Analysis of Cascade Utilization Dynamics:

In Figure 7, other key variables in the model are presented to
better understand the dynamics of cascade utilization.

* The number of EV batteries for cascade utilization, st, re-
mains close to zero during the period from # = 0 to # = 30, after
which it begins to increase. This initial phase sees a scarcity of
EV batteries suitable for cascade utilization. However, as the
scale of EV batteries rapidly grows, each period witnesses a
substantial number of EV batteries degrading to the capacity
threshold ¢, making them available for cascade utilization and
leading to the subsequent increase in s,.

* Both rt(EV) and rt(Nm_EV), the numbers of batteries re-
cycled from the EV and non-EV populations, have a rapid
increase after t = 70. This is due to both market demands ex-
periencing rapid growth phases, with these batteries gradually
retiring after 5 to 10 years of use, leading to a significant in-
crease in 7. This also warns us that if we cannot effectively
manage the impact of retired batteries, our environment will be
severely polluted by the chemical elements contained in these
retired batteries.

* The production of EV batteries each period B, exhibits
three phases: an initial increase, followed by a decrease, and
then another increase. The trends in the first and second phases
are due to the rapid initial growth rate of required EV batter-
ies, which then slows down. The increase in the third phase is
attributed to the large number of batteries retiring from earlier
periods, necessitating the production of new EV batteries to
meet this demand.

* The average capacity of non-EV batteries initially increases
briefly and then continues to decline. This is because, in the
early stages, non-EV batteries require new batteries to meet

rapidly increasing demand. As the scale of EVs expands and

(EV)
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the number of EV batteries available for cascade utilization
increases, the non-EV battery demand can be adequately met
by these cascade-utilized EV batteries, leading to a continuous

decrease in average capacity.

— s

(a) Number of cascade utilization
batteries, 5. It remains close to zero
till # = 30, then begins to increase
substantially.

(b) Number of recycled batteries
from EV and non-EV population,

(EV) (Non- EV)
rapldly after t = 70 because batteries
retire after 5 to 10 years of use.

and 7, Both increase
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(c) Battery productlon for EV and
non-EV, B( and B/ (Non-EV))
B,(EV) experiences a rapid initial
increase to meet the demand,
followed by a decrease, and then
another increase when the initial
batteries retire and more new ones

(d) Average capaci gy of EV and non-
EV po%ulanon fEV) and ¢ Nen-EV),

57/ increases briefly and then
contmues to decline. This is because
the initial demand for non-EV is
satisfied by new batteries but later

the demand can be adequately met by

need to be produced. cascade utilized batteries.

Figure 7: Key variables in the cascade utilization flow model.

Sensitivity Analysis of Key Parameters:

To maximize the objective function of social welfare, we need
to understand at what capacity level (¢c5) and in what proportion
(¢9) EV batteries should be cascade utilized. We analyze the
changes in the objective function under two scenarios: (1) vary-
ing cs while keeping ¢ constant, and (2) varying ¢ while keeping
¢s constant. Figure 8 shows the results from the two scenarios.

* Varying ¢s with fixed ¢. At different levels of ¢, we vary cs
from 0.7 to 0.95, covering a large range of battery capacity.
The curves in Figure 8(a) consistently exhibit an increase fol-
lowed by a decrease as ¢S increases. This trend is due to the
trade-off between EV and non-EV batteries. If ¢5 is low, the
number of EV batteries that need to be produced each period
is reduced, which lowers the cost of producing new EV bat-
teries. However, the average capacity of batteries available for
cascade utilization will also be lower, resulting in lower social
welfare for the non-EV sector. Conversely, if ¢s is high, the
average capacity of EV batteries will increase social welfare in
the EV sector, but more EV batteries will need to be produced.
The batteries available for cascade utilization will have a higher
average capacity, thereby increasing the social welfare in the
non-EV sector. These factors interact, ultimately leading to an
objective function curve that initially increases and then de-

creases. This also implies that, for a fixed level of ¢, there exists
an optimal value for ¢s somewhere between ¢z and ¢.

* Varying ¢ with fixed cs. Intuitively, we believe that a high-
er proportion of batteries available for cascade utilization can
increase the objective function. However, our results as shown
in Figure 8(b) indicate that this intuition only holds true when
the value of ¢ is appropriate. If the value of ¢ is too low (that
is, close to the mandatory recycling level cz), then the average
capacity of the cascade utilized batteries will be low. There-
fore, increasing ¢ will result in the non-EV population being
flooded with nearly obsolete batteries, causing a decline in the
objective function. On the other hand, if the value of ¢ is too
high, then batteries are utilized for cascade applications early in
their life cycle, and significantly more EV batteries will need to
be produced each period, again leading to a decline in the ob-
jective function. Only when the value of ¢s is appropriate -- the
battery performance is no longer sufficient to meet the require-
ments of EV usage but can still satisfy the needs of cascade
utilization -- will increasing ¢ lead to a continuous increase in
the objective function.
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Figure 8: Social utility as a function of ¢y and ¢.

To visualize how the objective function is affected by both ¢s
and ¢ simultaneously, we show the variations in the objective
function values on a parameter grid, as shown in Figure 9. The
parameter grid is spanned by ¢ = [0, 0.5) with interval 0.02
and ¢s = [0.7,0.95) with interval d¢, and the maximum value is
attained when ¢ = 0.48 and ¢5 = 0.829. It is conceivable that if
we continue to increase the value of ¢, the objective may still
have minor increases, because increasing ¢ means increasing
the number of batteries available for cascade utilization, which
provides the potential for higher social welfare.
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(a) 2D Heatmap of objective values on
parameter grids.

(b) 3D Heatmap of objective values
on parameter grids.

Figure 9: Heatmap of objective values on parameter grids of ¢; and ¢.
Parameter ¢ ranges from 0 to 0.5, and parameter ¢; from 0.7 to 0.95. The
maximum objective value is attained when ¢ = 0.48 and ¢, = 0.829.
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® Conclusion

This paper presents a comprehensive analysis of the lifecycle
management of EV batteries, emphasizing the dual strategies
of recycling and cascade utilization. By leveraging extensive
real-world data, we developed a model that predicts battery
lifespan and performance, providing a robust foundation for
policy and strategic decisions. The alignment of our model’s
predictions from a macro market perspective with expert fore-
casts® underscores the validity and reliability of the model and
demonstrates its practical applicability in real-world scenarios.
This model also forms the basis for subsequent analyses.

Sensitivity analysis of key parameters is conducted to iden-
tify the most impactful factors on system performance. This
analysis reveals the importance of optimizing the cascade ratio
and recycling efficiency to maximize social welfare. Policymak-
ers should consider these findings when formatting regulations
and incentives to ensure they address the most critical aspects
of battery lifecycle management.

The following recommendations, derived from numerical
findings and analysis, provide a roadmap for policymakers to
enhance the sustainability and economic viability of EV bat-
tery lifecycle management.

1. Enhancing data collection and sharing: Governments
should promote the establishment of comprehensive databases
for battery usage and degradation data. This would improve
model accuracy and enable better lifecycle management of EV
batteries.

2. Establishing robust recycling standards: Implementing
strict recycling standards can ensure that retired batteries are
processed in an environmentally friendly manner, minimizing
hazardous waste and promoting the recovery of valuable ma-
terials.

3. Supporting technological innovation: Investing in re-
search and development for advanced battery technologies and
recycling processes can drive innovation, improve recycling
efficiency, and reduce costs. This includes supporting the de-
velopment of more efficient battery degradation models.

4. Developing infrastructure for battery management: Build-
ing robust infrastructure for the collection, transportation, and
processing of batteries is essential. This includes creating fa-
cilities for recycling and cascade utilization to ensure efficient
handling of retired batteries.

5. Monitoring the advancements in battery technology:
Adjustments to policy decisions regarding cascading utiliza-
tion should be made in response to changes in the patterns of
battery capacity degradation, based on the prevailing circum-
stances.

In conclusion, this study provides insights for policymak-
ers and industry stakeholders and presents a path forward for
improving the sustainability and economic viability of EV bat-
teries. Future research should continue to refine and expand to
more complicated battery degradation models, to incorporate
emerging data, and to explore new strategies to further enhance
EV battery management. By doing so, we can ensure that the
rapid growth of the EV industry contributes positively to both
economic development and environmental sustainability.
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