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ABSTRACT: China's electric vehicle (EV) industry has experienced rapid growth in recent years, becoming a significant driver 
of economic and technological advancements. Lifecycle management of EV batteries is now a pressing issue due to environmental 
concerns. This paper investigates this problem, focusing on the dual strategy of recycling and cascade utilization. Using extensive 
real-world data, models are estimated to predict EV batteries’ performance and lifespan under practical conditions. These capacity 
degradation models are then applied to forecast the future growth of EV and non-electric vehicle (non-EV) battery volumes and 
the capacity structure of the battery population. Furthermore, a mathematical model is formulated to describe the flow of batteries 
in the EV and non-EV population, capturing EV battery transitions through cascade utilization to non-EV uses and to recycling. 
An optimization problem is then proposed to maximize social utility and to guide decisions on cascade utilization. 
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�   Introduction
Over the past five years, Electric Vehicles (EVs) have seen 

rapid growth globally. In 2024, EV sales exceeded 17 million, 
accounting for over 20% of all vehicle sales. The European 
Union, the United States, and China remain the three major 
markets, and Asia and Latin America are important emerging 
markets that see rapid growth in EV sales.1

The forecast for 2025 shows that EV sales are expected to 
grow further to exceed 20 million worldwide. The driving force 
for such growth varies in different markets. For example, in 
China, it is policy incentives, such as a trade-in scheme where 
higher rebate is offered for the purchase of an EV purchase 
than that the purchase of a conventional vehicle, as well as 
infrastructure development, and domestic manufacturing ca-
pacity, that will push share of EV sales up to 60%; in Europe, 
it is the emission reduction target that will drive up the shares 
of zero-emission EVs to 25%; and in the United States, sales 
are projected to raise slightly to 11% due to change in policy 
direction.2

Driven mostly by the increase in EV sales, in 2024, battery 
production that satisfies both EV demand and storage applica-
tions reached the 1TWh milestone. China remains the largest 
source of demand at 60% of global demand, European Union 
and the United States at 13%.2

Recognizing these international differences, this paper fo-
cuses on the Chinese context, examining optimal recycling and 
cascade utilization strategies tailored to its unique market con-
ditions and policy environment.

Beyond economic benefits, the widespread adoption of EVs 
also brings substantial environmental advantages. Electrifica-
tion of transportation is seen as a pivotal strategy to reduce 
dependence on petroleum-based fuels and to mitigate urban 
air pollution.3 EVs, with zero tailpipe emissions, contribute to 

improved air quality and reduced greenhouse gas emissions 
when powered by low-carbon energy sources.

However, the rapid expansion of the EV market also brings 
new challenges, particularly in the management of retired 
batteries. With the rapid development of EVs, the number 
of retired batteries is expected to surge in the coming years. 
According to Wu et al.,4 the volume of retired power batteries 
is projected to rise from 112,000 tonnes in 2020 to 708,000 
tonnes by 2030. The substantial increase in retired batteries 
underscores the urgent need for efficient reuse and recycling 
strategies. Improper disposal of batteries can lead to severe en-
vironmental and safety risks. For instance, leaked heavy metals 
from improperly disposed batteries can contaminate water and 
soil, and pose threats to ecosystems and human health through 
bioaccumulation in the food chain.5 Additionally, improper 
dismantling of EV batteries could pose significant safety con-
cerns, such as fire or explosion.6

Typically, there are two main strategies for handling retired 
EV batteries: recycling and cascade utilization. Recycling in-
volves dismantling batteries to reclaim valuable materials such 
as lithium, cobalt, and nickel, which can be used to manufacture 
new batteries. In other words, recycling aims to convert pow-
er batteries into various raw materials with minimal pollution. 
Cascade utilization, on the other hand, repurposes batteries for 
secondary applications after their initial use as EV batteries. 
This strategy extends the lifecycle of EV batteries and miti-
gates the environmental impact of battery disposal. Cascade 
utilization includes applications in energy storage systems,7 
backup for base stations,8 grid support services,9 and renewable 
energy integration,10 etc. According to the report by the China 
Electricity Council,11 from 2019 to 2022, storage demand grew 
from 466 MWh to 5,498 MWh for renewable energy stations, 
from 523 MWh to 1,812 MWh for the power network, and 
from 119 MWh to 758 MWh for commercial demand. The 
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rapid growth demonstrates the potential need for cascade-uti-
lized EV batteries.

While recycling is a straightforward solution, it fails to fully 
harness the capacity of EV batteries. From the perspective of 
social welfare, cascade utilization is a superior strategy as it 
enables maximal utilization of battery capacities. However, the 
proper planning, management, and operations of cascade utili-
zation remain challenging.

In this paper, we analyze and explore issues related to the life 
cycle management of EV batteries, including: when to recycle 
and when to cascade utilize? How to balance the two strate-
gies? How to develop them in the long term?

We first investigate the capacity degradation pattern for 
individual batteries to lay the foundation for our study. The 
modeling utilizes two publicly available datasets to provide 
insights into the typical lifespan and performance decline of 
EV batteries. The analysis is then extended from individual 
batteries to the entire battery population, depicting its ca-
pacity distribution at any point in time. A cascade utilization 
flow model is introduced to capture the transition of batteries 
from EV to non-Electric Vehicle (non-EV) markets, and their 
eventual flow to recyclers. Based on the current state of the EV 
and the cascade utilization market, we project future growth 
in battery volumes. It shows that the number of retired EV 
batteries will be enormous, with only a small fraction absorbed 
by the current cascade utilization market, thus highlighting a 
significant underutilization of this potential strategy.

In summary, this paper provides a quantitative analysis of 
the economic and policy factors influencing the cascade utili-
zation of EV batteries. Through detailed modeling of battery 
degradation patterns, market projections, and the effects of 
government subsidies, this paper aims to inform and guide 
policymakers and industry stakeholders in making strategic 
decisions that enhance the sustainability and economic viabil-
ity of EV battery lifecycle management.

�   Literature Review
The related literature mainly consists of research in two ar-

eas: the pattern of battery capacity degradation and multi-party 
relationships related to the recycling of batteries.

Capacity Degradation of Batteries:
Battery capacity degradation is a significant concern for the 

sustainability and performance of EVs. Different approaches 
have been used in modeling battery degradation. The first is by 
simulating the underlying physical degradation mechanisms. 
Edge et al. provide a comprehensive overview of lithium-ion 
battery degradation mechanisms.12 They discuss the cou-
pling between different degradation processes and propose a 
semi-empirical model that integrates physical and chemical 
degradation mechanisms. This model aims to predict capac-
ity fade and enhance battery management systems. Luo et al. 
present a detailed study on capacity degradation and aging 
mechanisms in lithium-ion batteries under various operating 
conditions.13 Their empirical model considers factors such as 
the solid electrolyte interphase (SEI) growth, lithium plating, 

and particle cracking to predict battery lifespan under differ-
ent depths of discharge and temperatures.

Another approach is to employ data-driven methods to 
model the degradation process of batteries. Zhang et al. built 
an accurate battery forecasting system based on electrochemi-
cal impedance spectroscopy.14 A Gaussian process model takes 
the entire collected spectrum as input and automatically de-
termines which spectral features better predict degradation. 
Huang et al. propose a novel charging encoder that alternates 
between a Temporal Convolutional Network and a Bidirection-
al Gated Recurrent Unit to capture local temporal information 
and long-term dependencies related to the state of capacity 
(SOC) and the state of health (SOH) during charging.15 The 
proposed framework enables a unified joint estimation of the 
two variables, substantially enhancing efficiency.

Recycling of EV Batteries:
As the battery recycling and cascade utilization market 

expands, more research efforts start to focus on the deci-
sion-making relationship between the various parties in this 
context.

Some of them focus on the strategy analysis of different 
roles in the supply chain, including pricing, contracts, and ben-
efit distribution. Gu et al. propose a closed-loop supply chain 
model in which EV batteries can be reused, such as for ener-
gy storage, before being recycled.16 They analyze the optimal 
pricing strategy between the manufacturer and remanufacturer 
to optimize the total profit in the whole supply chain. Zhu and 
Yu study the effect of adverse selection and moral hazards in 
the closed-loop supply chain of EV batteries based on Infor-
mation Screening Models in the principal-agent theory.17

Some papers examine the impact of government policies. 
Gu et al. look for the optimal production strategy when mar-
ket demand is uncertain under government subsidy.18 It is 
concluded that the optimal production quantity and expect-
ed utility increase with the subsidy. Guan and Hou study the 
equilibrium strategy of the EV battery supply chain under the 
dual mechanism of government subsidy and cost-sharing and 
find that the utility of cascade utilization efforts will increase 
with the increase of government subsidies.19

In this paper, the focus is not on the benefits and decisions 
of participants at the micro level; instead, it focuses on the cir-
culation of batteries from a macro perspective and hopes to 
optimize social welfare through macro-control measures such 
as cascade utilization standards.

�   Methods
Electric Vehicle Battery Capacity Degradation Model:
To develop effective recycling and cascade utilization strat-

egies, it is essential to understand the mechanisms behind the 
capacity degradation of EV batteries over time. In this sec-
tion, we propose an EV battery capacity degradation model to 
help accurately predict their lifespan and performance under 
real-world conditions.

Battery capacity refers to the total amount of electric charge 
a battery can store, quantified as a real number and measured 
in ampere-hours (Ah). Generally, a larger battery capacity al-
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lows for more energy storage, enabling EVs to travel greater 
distances on a single charge. It serves as a crucial indicator of 
a battery's health status, with higher values representing better 
overall performance.

The performance of EV batteries inevitably degrades with 
increased usage. This degradation is primarily reflected in the 
gradual decline of battery capacity. Over time, this reduction 
in capacity diminishes the battery's ability to store and deliver 
energy effectively. This degradation also forms the basis for 
cascade utilization. As EV batteries degrade over time, they 
eventually become unsuitable as power batteries but retain 
value for other applications. The timing of their retirement 
is critical to determining their remaining utility in secondary 
applications.

To characterize the overall condition of EV batteries, it is 
necessary to accurately describe the capacity degradation of 
EV batteries. Some studies have examined the performance of 
batteries under laboratory conditions. However, in real-world 
scenarios, the use of EV batteries is far more complex than 
under laboratory testing conditions. EV batteries are affect-
ed by numerous complex real-world factors, such as unstable 
voltage, random charging times, EV owners' charging prefer-
ences (charging only when nearly depleted or frequent partial 
charging), constantly changing ambient temperature, and 
more. These factors can render the battery degradation curves 
obtained under laboratory conditions invalid.

Therefore, to accurately model the capacity degradation of 
EV batteries, it is essential to build the model with extensive 
real-world data, which ultimately helps capture the most fun-
damental degradation pattern.

In our study, two publicly available EV battery datasets 
are utilized to model the degradation curve and perform 
corresponding statistical analysis. Both datasets comprise pa-
rameters of EV batteries under real-world conditions.

Dataset A provides long-term charging data from 20 com-
mercial EVs with identical battery systems, each monitored 
over approximately 29 months.20 The data were collected 
during charging via CAN communication at regular intervals 
and captured key patterns relevant to real-world battery health 
evaluation. The metric for battery usage is the length of time 
in service, which is reasonable given that commercial EVs are 
in continuous operation.

Dataset B offers a large-scale time-series capacity data of 
191 EVs, including over 1.2 million charging sessions from 
vehicles across three manufacturers.21 Each session records 
multiple charging-related parameters at fixed intervals, in-
cluding voltage, current, temperature, capacity, and estimated 
SOC. The dataset is designed to facilitate deep learning re-
search on charging behavior, battery degradation, safety, and 
energy management in real-world settings. The usage metric 
in this dataset is the odometer reading.

In both datasets, each EV has an average of over 2,000 data 
points of battery capacity. An overview of these datasets is 
shown in Table 1.

Let C denote the capacity of EV batteries, and x denote the 
usage metric. A two-step process is used to investigate the re-
lationship between C and x. First, the correlation coefficient 
between C and x is calculated to check if their correlation is 
indeed negative, as intuitively expected. The linear regression 
model is then estimated:

		              C = β x + α			           (1)

Notes: * indicates significance at the p< 0.001 level.

The following observations are made based on the results 
shown in Table 2:

(1) C and x exhibit a strong negative correlation in both 
datasets (−0.709 for Dataset A and −0.695 for Dataset B), 
consistent with the well-known fact that battery capacity de-
creases with increased usage.

(2) Recall the substantial differences between the two data-
sets in terms of battery types, EV models, data collection 
conditions, and usage metrics. Note that both datasets result in 
correlation coefficients close to −0.7, which indicates that the 
rate of battery capacity degradation with usage is consistent.

(3) Data points contain much noise, highlighting the diffi-
culty of accurately predicting battery capacity at the individual 
level under real-world conditions. The considerable noise may 
be attributed to complex environmental factors that lead to 
a wide range of data fluctuations. This suggests that a large 
number of samples (data points) is necessary to effectively mit-
igate the impact of noise on parameter estimation.

(4) The 95% confidence intervals for the parameters are very 
narrow, indicating a low degree of uncertainty in the parameter 
estimates. We also show the curve fitting of Datasets A and B 
in Figures 1 and 2, respectively.

Table 1: Overview of two EV battery datasets: dataset A from 20 commercial 
EVs monitored over approximately 29 months, dataset B from 191 EVs with 
over 1.2 million charging sessions.

Table 2: Correlation and linear regression analysis between battery capacity 
C and usage metrics x. A strong negative correlation is found in both datasets. 
The linear regression models are C = -2.228 x 10-2  * Time in Service + 132.573 
for Dataset A, and C = -2.554 x 10-5 * Mileage + 43.308 for Dataset B.

ijhighschoolresearch.org



	 53	

st: the number of batteries cascaded from the EV population 
to the non-EV population at time step t.

Figure 3 illustrates the flow of EV and non-EV batteries. 
The demand for EV batteries (Dt

(EV)), is satisfied by batter-
ies that are currently in the EV population and the number of 
new batteries produced (Bt

(EV)). Due to capacity degradation, 
batteries will no longer meet the capacity requirements of the 
EV population after a period of usage. Some (rt

(EV)) need to 
be directly recycled, while others (st) still hold value for cascade 
utilization in the non-EV population. Therefore, demand for 
non-EV batteries (Dt

(Non-EV)), is satisfied by current batteries 
in the non-EV population, new production for non-EV usage 
(Bt

(Non-EV)), and batteries cascaded from the EV population 
(st). Batteries in the non-EV population also degrade, and 
some need to be recycled (rt

(Non-EV)). By knowing the state at 
each timestamp, the evolution of the battery population can be 
captured starting from t = 0 onward.

In the process of cascade utilization of EV batteries, gov-
ernment intervention is often necessary to maximize social 
welfare. Government policies and regulations can provide 
essential guidelines for the proper management of battery 
resources, ensure environmental protection, and promote sus-
tainable economic development. A better understanding of the 
dynamics between cascade utilization and recycling of batteries 
will guide more effective government policies.

Let c0 denote the initial capacity of a battery, and cR the re-
cycling threshold for EV batteries. Similarly, cS is the threshold 
for cascade utilization, and cS > cR. For all EV batteries with a 
capacity of cS, we stipulate that no more than a proportion q of 
them will be cascade utilized, while the rest will continue to be 
used in the EV market until they are recycled. In this process, 
the initial capacity c0 and recycle capacity cR are determined 
by the characteristics of batteries, while the cascade capacity cS 
and cascade ratio q can be adjusted by the government. These 
standards can directly affect the flow of batteries, including 
production, supply, utilization, and recycling. Therefore, we 
want to explore how the standards should be developed to en-
hance the overall societal benefits.

It is observed from Figures 1 and 2 that the capacity of EV 
batteries decreases linearly with increased usage. These linear 
models form the basis for our discussion on the cascade utili-
zation flow model in the next section.

Optimization of Cascade Utilization for Social Welfare:
This subsection explores how the government could manage 

the cascade utilization to maximize social welfare. The follow-
ing notations are used in subsequent discussions.

Dt
(EV) and Dt

(Non-EV): demand for batteries by the EV and 
non-EV population at time step t, respectively.

Bt
(EV) and Bt

(Non-EV): the number of new batteries that 
need to be produced for the EV and non-EV population at 
time step t, respectively.

It
(EV) and It

(Non-EV): the number of batteries in the EV and 
non-EV population at time step t, respectively.

It,c
(EV) and It,c

(Non-EV): the number of batteries with ca-
pacity c in the EV and non-EV population at time step t, 
respectively.

rt
(EV) and rt

(Non-EV): the number of batteries to be recycled 
from the EV and non-EV population at time step t, respec-
tively.
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Figure 1: Battery capacity vs number of days in service in Dataset A: scatter 
plot in blue and linear regression line C = -2.228 x 10-2  * Time in Service + 
132.573 in red.

Figure 2: Battery capacity vs mileage in Dataset B: scatter plot in blue and 
linear regression line C = -2.554 x 10-5  * Mileage + 43.308 in dark green.

Figure 3: Flow of batteries in the market at time step t. The demand for 
EV batteries (Dt

(EV)) is satisfied by batteries that are currently in the EV 
population and the number of new batteries produced (Dt

(EV)). Demand 
for non-EV batteries (Dt

(Non-EV)) is satisfied by current batteries in the 
non-EV population, new production for non-EV usage (Bt

(Non-EV)), and 
batteries cascade utilized from the EV population (st). Some batteries (rt

(EV), 
rt

(Non-EV)) are recycled.
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Then for each time step t, the total number of batteries in 
EV users at time step t should be no less than the battery de-
mand of the EV population at time step t:

(9)

Equivalently, the number of batteries produced for the EV 
population can be expressed as:

(10)

Battery Dynamics in the Non-EV Population:
The batteries used in the non-EV population are either 

batteries produced for non-EV usage or are from the EV pop-
ulation. Non-EV batteries can be used for energy storage and 
power supply for communication base stations, power stations, 
and in other commercial settings. These batteries will also 
gradually degrade over time and end up being recycled. We 
assume that they follow the same degradation pattern as the 
EV batteries. Similar to the modeling of the EV population, 
let It

(Non-EV) be the number of batteries in the non-EV pop-
ulation with capacity c at time step t, and δc be the capacity 
degraded within one time step. The number of batteries with 
capacity c0 in the non-EV population at time t is equal to the 
number of batteries produced for the non-EV population at 
time step t,

(11)

The number of batteries with capacity cS at time step t + 1 
is equal to the number of batteries with capacity cS + δc at time 
step t plus the number of batteries transferred from the EV 
population st,

(12)

When batteries with capacity cR + δc degraded to the stan-
dard non-EV battery recycle capacity cR, they are recycled,

(13)

The number of batteries with capacity cR at time step t is 0, 
indicating that all batteries of this capacity are recycled,

(14)

Batteries of other capacities follow a normal degradation, 
which means that the number of batteries with capacity c at 
time t + 1 is equal to the number of batteries with capacity c + 
δc at time t,

(15)

At time step t, the total number of batteries It
(Non-EV) is the 

sum of the batteries with capacities ranging from cR to c0,

(16)

Battery Dynamics in the EV Population:
The batteries used in the EV population gradually degrade 

in daily driving and end up in the non-EV population or are 
recycled. To accurately model the battery flow in the EV pop-
ulation, let δc be the capacity degraded during one time step, 
and It,c

(EV) be the number of batteries with capacity c at time 
step t. At each time step t, the number of batteries with capac-
ity c0 in the EV population is equal to the number of batteries 
produced for the EV population at time step t:

(2)

The batteries with capacity cS + δc in the EV population 
will degrade to capacity cS, which is the capacity threshold for 
cascade utilization. Considering that not all batteries can be 
collected for cascade utilization, we assume only a proportion 
q of them can be transferred into the non-EV population. Fur-
thermore, the demand for new non-EV batteries also restricts 
the number of batteries transferred. Therefore, the batteries 
transferred from the EV population to the non-EV population 
can be expressed as:

(3)

and the number of batteries with capacity cS in the EV popula-
tion at time step t + 1 is equal to the number of batteries that 
are not transferred into the non-EV population,

(4)

When batteries with capacity cR + δc degraded to cR, they are 
forced to be recycled,

(5)

Then, the number of batteries with capacity cR in the EV 
population at time step t becomes 0,

(6)

For batteries in other capacity ranges, the number of batter-
ies with capacity c in the EV population at time t + 1 is equal to 
the number of batteries with capacity c + δc in EV users at time 
step t. To be specific, this applies to the capacity ranges cS + δc 
≤ c ≤ c0 − δc and cR + δc ≤ c ≤ cS − δc. This degradation process 
can be expressed as:

(7)

At time step t, the total number of batteries in EV users 
It

(EV) is the sum of the batteries with capacities ranging from 
cR to c0:

(8)
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The total number of batteries at time step t should be able to 
cover the demand for batteries at time step t,

(17)

Equivalently, the batteries to be produced for the non-EV 
population can be expressed as

(18)

Social Welfare Modeling:
With the formulation of the battery dynamics in the EV and 

non-EV population, we further formulate the social welfare of 
this process. In this context, social welfare is the benefits that 
battery usage brings to society. For example, using EV batteries 
with higher average capacity can improve the overall efficien-
cy of EV usage, thereby enhancing the efficiency of the entire 
transportation system and contributing to greater social wel-
fare. Conversely, lower capacity reduces efficiency, leading to 
lower social welfare. We assume the social welfare brought by 
the batteries used in the EV and non-EV populations is related 
to the mean capacity in each population. The mean capacities 
can be calculated as:

(19)

(20)

We use a utility function f (EV) to characterize the social 
welfare within the EV population. For EV owners, when the 
degradation starts from a brand-new battery, the major effect 
is the gradual reduction in range. However, as battery ca-
pacity continues to degrade, some other issues become more 
apparent, including deterioration in acceleration and braking 
performance, slowing down of charging speeds, and a greater 
failure rate of the vehicle’s information systems.22 Therefore, 
we propose to employ a non-linear utility function f (EV) of 
mean EV capacity to measure the unit social welfare of the EV 
population:

(21)

where k2 < k1 are the slopes for the piece-wise linear utility 
function, and cEV is the threshold where the slope changes. 
Similarly, the unit social welfare of the non-EV population can 
also be measured by a non-linear function:

(22)

where k4 < k3 are slopes of the utility function f (Non-EV), 
and cNon-EV is the threshold where the slope changes. The 
non-EV population often has lower requirements on batter-
ies; therefore, it is reasonable to assume that cNon-EV < cEV and 
k4(cNon-EV − cR ) ≥ k1 (cEV − cR).

Based on the unit social welfare and the battery ownership in 
the EV and non-EV population, their total social welfare can 
be respectively expressed as:

(23)

(24)

We assume that new batteries are manufactured with unit 
cost cm. With the number of batteries produced for both EV 
and non-EV populations, the related social welfare at time step 
t is − cm (Bt

(EV) + Bt
(Non-EV)).

To make EV batteries available for non-EV utilization, the 
following costs must be considered.23 First, the batteries need 
to be dismantled, which requires labor and equipment costs. 
Before entering the non-EV population, batteries need to 
be inspected to determine if they meet the non-EV utiliza-
tion standards based on their remaining life and performance. 
Batteries may also need to be repackaged or remanufactured 
before entering the cascade utilization market to ensure safe 
transportation and storage. We denote the unit transfer cost by 
ks, which covers all the costs mentioned above, and the related 
social welfare in time step t can be expressed as − ks st.

For recycling end-of-life batteries, there are also several costs 
to be considered. The end-of-life batteries often need to be 
centralized for further processing because of the potential haz-
ards and pollution that can result from the process. Therefore, 
the logistics cost incurred during battery collection and trans-
portation is not negligible. The collected end-of-life batteries 
also need to be sorted and pre-processed, which means labor 
costs, the cost of sorting equipment, and the cost of preliminary 
discharge and disassembly of batteries. Then these batteries are 
processed using chemical, mechanical, and thermal treatment 
methods, which incur costs for equipment usage, chemical 
reagents, energy consumption, and labor. These processes are 
often accompanied by useless or even harmful by-products, like 
waste liquids, residues, and gases. The cost of handling those 
hazardous substances should also be considered. In our formu-
lation, we denote the unit battery recycle cost by kr to account 
for all the costs mentioned above in the recycling process. Since 
the batteries can be recycled from the EV and non-EV pop-
ulation, the related social welfare at time step t is expressed as 
− kr (rt (EV) + rt (Non-EV)).

Based on the above formulation of the EV and non-EV 
battery dynamics and social welfare, the decision-making of 
the government can be advised by the following optimization 
problem:

(25)

Subject to: EV battery dynamics in Eqs. (2-8), and (10),
Non-EV battery dynamics in Eqs. (11-16), and (18),
Capacity calculation in Eqs. (19) and (20).

Social welfare (ut (EV), ut (Non-EV)) is calculated using Eqs 
(23) and (24). Recall that the parameter q is the maximum cas-
cade ratio of batteries, and the actual number of batteries that 
can be transferred to the non-EV population is also restricted 
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by the demand of the non-EV population. Intuitively speaking, 
a lower q limits the cascade utilization of batteries. Therefore, 
if a battery can bring more social utility after entering the non-
EV population, the total social welfare would increase with q. 
On the other hand, if a battery can bring more social utility 
when staying in the EV population, the total social welfare may 
decrease with a larger q, because a smaller q can keep more bat-
teries in the EV population and result in more social welfare.

The effect of cS is much more complex. From the perspec-
tive of the life cycle of an individual battery, the manufacturing 
cost and the recycling cost are fixed and not influenced by cS. 
If the battery stays in the EV population until recycled, social 
welfare is not influenced by cS. If a battery is transferred to the 
non-EV population at capacity cS, a higher cS generates greater 
social welfare in the non-EV population compared to the EV 
population, as indicated by our formulation of the functions 
f (EV)(c) and f (Non-EV)(c), along with the associated parameter 
requirements. If the difference in social welfare between the 
EV and non-EV population exceeds the transfer cost ks, the 
more batteries transferred, the more social welfare is achieved. 
A higher cS means a battery can serve for a longer time in the 
non-EV population until recycled, which lowers the demand 
of the non-EV population, and results in a reduction in the vol-
ume of batteries transferred. In addition, a higher cS may also 
accelerate the replacement of batteries in the EV population, 
which incurs more cost for the production of new batteries. 
These effects we discussed are also highly dependent on the 
parameter settings and the real-world demand and capacity 
distribution. Therefore, the overall effect of cS is hard to predict.

Model Assumptions and Limitations:
Before we discuss computational results, it should be noted 

that several assumptions are made in this study. First, the bat-
tery degradation model assumes linear capacity degradation, 
which may differ from actual nonlinear degradation patterns 
influenced by varying operational conditions. Second, the bat-
tery population is treated as homogeneous despite variations 
in battery chemistries and usage scenarios. Finally, our pre-
dictions rely on logistic growth modeling of market demand, 
which may not fully capture market uncertainties or disruptive 
technological changes. These limitations should be considered 
when interpreting the results.

�   Result and Discussion 
Estimated Growth of EV and Non-EV Batteries:
We collected data on EV ownership in the Chinese market 

from 2017 to 2023.24 Based on this data, we estimate the fu-
ture growth of the EV market. Three models are selected for 
this estimation: the exponential model, the quadratic function 
model, and the logistic growth model, with mean squared er-
ror (MSE) used as the evaluation metric. Figure 4 shows the 
fitting performance of these three models, with time in the 
horizontal axis, where a real-valued interval [i, i+1) represents 
Year i, and the number of EVs in the vertical axis.

Although the exponential model provides the best fit for 
the 2017-2023 data, it should be noted that using it to predict 
future growth could be problematic since the number of EVs 
cannot grow indefinitely as predicted in the exponential mod-
el and the quadratic function model. Furthermore, the logistic 
growth model exhibits low fitting errors, indicating a decent 
fit. It is also noteworthy that, according to our proposed mod-
el,   EV ownership will reach approximately 100 million by the 
end of 2030. This prediction aligns with the forecast made by 
leading experts, which underscores the validity and reliability 
of our proposed model.25

According to EVChina, the most common cascade uses of 
EV batteries are for energy storage in communication base 
stations, renewable energy storage, and public facility energy 
storage.26 We aggregate the demand data for these three appli-
cations from 2018 to 2022 to obtain the overall demand data 
for the cascade use. Based on the data, we fit a logistic growth 
model for the demand of non-EV batteries (note that this 
amount is calculated based on the capacity of EV batteries). 
Figure 5 shows the fitting result. It can be observed that the 
scale of electricity usage for these non-EV batteries experienc-
es a period of rapid growth, followed by a slowdown in growth, 
and eventually stabilizes around 2035.

The estimated numbers of EV and non-EV batteries are 
used as the initial conditions, D1

(EV) and D1
(Non-EV), in the 

cascade flow model.
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Figure 4: Estimate of EV growth in China based on data from 2017-2023. 
Three models - exponential, quadratic function, and logistic growth – are 
estimated. Mean squared error (MSE) for each model is included as a measure 
of fitness. Since future growth cannot increase indefinitely as predicted in 
the exponential model and the quadratic function model, the logistic growth 
model is selected as the preferred model.

Figure 5: Logistic growth curve for non-EV batteries in China. The logistic 
growth model is estimated using data from 2018-2022 that cover energy 
storage in communication base stations, renewable storage, and public facility 
storage.
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Macro Perspective on Cascade Utilization Flow Model:
The evolution of battery population is simulated using the 

flow model, including EV battery dynamics in Eqs. (2-8), and 
(10), non-EV battery dynamics in Eqs. (11-16), and (18), and 
capacity calculation in Eqs. (19) and (20). The corresponding 
social welfare (ut

(EV), ut
(Non-EV)) is calculated using Eqs. (23-

25).
The parameter settings for the simulation study are listed in 

Table 3. More specifically, the parameters for time are based 
on our defined study period, parameters for battery degrada-
tion are from the empirical analysis discussed in the Electric 
Vehicle Battery Capacity Degradation Model section of this 
paper, cost-related parameters are adopted using a normaliza-
tion approach based on the conceptual frameworks in related 
studies,18,19 and the social utility parameters are based on the 
key contribution of our model, designed to capture the pro-
posed non-linear welfare effects of battery performance.18

Figure 6 shows the total number of batteries, as well as the 
changes in battery capacity structure. We partition the capac-
ity value of [0.7, 1] into 12 equal intervals and mark intervals 
with different colors. For EV batteries, the ratio of batteries of 
high capacity (capacity 0.85 ~ 1) will first increase and then de-
crease. This is because the number of EV batteries will initially 
undergo a rapid growth phase, during which a large number of 
new batteries with high capacity will enter the population, in-
creasing their proportion. As growth slows, the number of new 
batteries entering the population each period will decrease. 
Additionally, the capacity of batteries from the previous high-
growth phase will gradually degrade, leading to an increase in 
the proportion of low-capacity batteries (capacity 0.7 ~ 0.85).

In the initial phase (time step 1 to 40), the proportion of 
high-density batteries in non-EVs is rising. This is because 
there are too few EV batteries available for cascade utiliza-
tion to meet the non-EV demand at this stage. Consequently, 
additional new batteries need to be produced for non-EV ap-

plications. These high-capacity new batteries increase their 
proportion in the population. After this initial phase, the over-
all capacity within the non-EV population rapidly declines. By 
the end of the simulation, almost all non-EV batteries orig-
inate from the cascade utilization of EV batteries. This shift 
is due to the rapid growth in EV batteries, which significantly 
increases the number of EV batteries available for cascade uti-
lization, adequately meeting the non-EV electricity demand.

Deeper Analysis of Cascade Utilization Dynamics:
In Figure 7, other key variables in the model are presented to 

better understand the dynamics of cascade utilization.
• The number of EV batteries for cascade utilization, st, re-

mains close to zero during the period from t = 0 to t = 30, after 
which it begins to increase. This initial phase sees a scarcity of 
EV batteries suitable for cascade utilization. However, as the 
scale of EV batteries rapidly grows, each period witnesses a 
substantial number of EV batteries degrading to the capacity 
threshold cS, making them available for cascade utilization and 
leading to the subsequent increase in st.

• Both rt
(EV) and rt

(Non-EV), the numbers of batteries re-
cycled from the EV and non-EV populations, have a rapid 
increase after t = 70. This is due to both market demands ex-
periencing rapid growth phases, with these batteries gradually 
retiring after 5 to 10 years of use, leading to a significant in-
crease in rt. This also warns us that if we cannot effectively 
manage the impact of retired batteries, our environment will be 
severely polluted by the chemical elements contained in these 
retired batteries.

• The production of EV batteries each period Bt
(EV) exhibits 

three phases: an initial increase, followed by a decrease, and 
then another increase. The trends in the first and second phases 
are due to the rapid initial growth rate of required EV batter-
ies, which then slows down. The increase in the third phase is 
attributed to the large number of batteries retiring from earlier 
periods, necessitating the production of new EV batteries to 
meet this demand.

• The average capacity of non-EV batteries initially increases 
briefly and then continues to decline. This is because, in the 
early stages, non-EV batteries require new batteries to meet 
rapidly increasing demand. As the scale of EVs expands and 

Table 3: Parameter settings for the cascade utilization flow model. The 
battery population evolution is simulated for 12 years (144 time steps; each 
time step is a month).

Figure 6: Change in EV and non-EV battery populations and their capacity 
distributions over time. The capacity range [0.7, 1] is divided into 12 equal 
intervals, represented by different colors. In the EV battery population, the 
proportion of high capacity (capacity > 0.85) batteries will increase initially 
and then decrease, proportion of low capacity (capacity between 0.7 and 0.85) 
batteries will increase due to capacity degradation over time. In the non-EV 
population, after an initial phase with a high proportion of high-capacity 
batteries, the overall capacity rapidly declines.

(b) Non - EV batteries(a)EV batteries
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the number of EV batteries available for cascade utilization 
increases, the non-EV battery demand can be adequately met 
by these cascade-utilized EV batteries, leading to a continuous 
decrease in average capacity.

Sensitivity Analysis of Key Parameters:
To maximize the objective function of social welfare, we need 

to understand at what capacity level (cS) and in what proportion 
(q) EV batteries should be cascade utilized. We analyze the 
changes in the objective function under two scenarios: (1) vary-
ing cS while keeping q constant, and (2) varying q while keeping 
cS constant. Figure 8 shows the results from the two scenarios.

• Varying cS with fixed q. At different levels of q, we vary cS 
from 0.7 to 0.95, covering a large range of battery capacity. 
The curves in Figure 8(a) consistently exhibit an increase fol-
lowed by a decrease as cS increases. This trend is due to the 
trade-off between EV and non-EV batteries. If cS  is low, the 
number of EV batteries that need to be produced each period 
is reduced, which lowers the cost of producing new EV bat-
teries. However, the average capacity of batteries available for 
cascade utilization will also be lower, resulting in lower social 
welfare for the non-EV sector. Conversely, if cS  is high, the 
average capacity of EV batteries will increase social welfare in 
the EV sector, but more EV batteries will need to be produced. 
The batteries available for cascade utilization will have a higher 
average capacity, thereby increasing the social welfare in the 
non-EV sector. These factors interact, ultimately leading to an 
objective function curve that initially increases and then de-

creases. This also implies that, for a fixed level of q, there exists 
an optimal value for cS  somewhere between cR and c0.

• Varying q with fixed cS. Intuitively, we believe that a high-
er proportion of batteries available for cascade utilization can 
increase the objective function. However, our results as shown 
in Figure 8(b) indicate that this intuition only holds true when 
the value of cS is appropriate. If the value of cS is too low (that 
is, close to the mandatory recycling level cR), then the average 
capacity of the cascade utilized batteries will be low. There-
fore, increasing q will result in the non-EV population being 
flooded with nearly obsolete batteries, causing a decline in the 
objective function. On the other hand, if the value of cS is too 
high, then batteries are utilized for cascade applications early in 
their life cycle, and significantly more EV batteries will need to 
be produced each period, again leading to a decline in the ob-
jective function. Only when the value of cS is appropriate -- the 
battery performance is no longer sufficient to meet the require-
ments of EV usage but can still satisfy the needs of cascade 
utilization -- will increasing q lead to a continuous increase in 
the objective function.

To visualize how the objective function is affected by both cS 
and q simultaneously, we show the variations in the objective 
function values on a parameter grid, as shown in Figure 9. The 
parameter grid is spanned by q = [0, 0.5) with interval 0.02 
and cS = [0.7, 0.95) with interval δc, and the maximum value is 
attained when q = 0.48 and cS = 0.829. It is conceivable that if 
we continue to increase the value of q, the objective may still 
have minor increases, because increasing q means increasing 
the number of batteries available for cascade utilization, which 
provides the potential for higher social welfare.

Figure 7: Key variables in the cascade utilization flow model.

Figure 8: Social utility as a function of cS and q.

Figure 9: Heatmap of objective values on parameter grids of cS and q. 
Parameter q ranges from 0 to 0.5, and parameter cS from 0.7 to 0.95. The 
maximum objective value is attained when q = 0.48 and cS = 0.829.

(b) Number of recycled batteries 
from EV and non-EV population, 
rt

(EV) and rt (Non-EV). Both increase 
rapidly after t = 70 because batteries 
retire after 5 to 10 years of use.

(b) Social utility as a function of q, 
proportion of EV batteries that could 
be utilized for cascade use.

(b) 3D Heatmap of objective values 
on parameter grids.

(d) Average capacity of EV and non-
EV population, ct(EV) and ct(Non-EV). 
ct(Non-EV) increases briefly and then 
continues to decline. This is because 
the initial demand for non-EV is 
satisfied by new batteries but later 
the demand can be adequately met by 
cascade utilized batteries.

(a) Number of cascade utilization 
batteries, st. It remains close to zero 
till t = 30, then begins to increase 
substantially.

(a) Social utility as a function of cS, 
capacity level for cascade use. For 
a fixed level of q, there exists an 
optimal value for cS that maximizes 
social welfare.

(a) 2D Heatmap of objective values on 
parameter grids.

(c) Battery production for EV and 
non-EV, Bt

(EV) and Bt
(Non-EV). 

Bt
(EV) experiences a rapid initial 

increase to meet the demand, 
followed by a decrease, and then 
another increase when the initial 
batteries retire and more new ones 
need to be produced.
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�   Conclusion 
This paper presents a comprehensive analysis of the lifecycle 

management of EV batteries, emphasizing the dual strategies 
of recycling and cascade utilization. By leveraging extensive 
real-world data, we developed a model that predicts battery 
lifespan and performance, providing a robust foundation for 
policy and strategic decisions. The alignment of our model’s 
predictions from a macro market perspective with expert fore-
casts23 underscores the validity and reliability of the model and 
demonstrates its practical applicability in real-world scenarios. 
This model also forms the basis for subsequent analyses.

Sensitivity analysis of key parameters is conducted to iden-
tify the most impactful factors on system performance. This 
analysis reveals the importance of optimizing the cascade ratio 
and recycling efficiency to maximize social welfare. Policymak-
ers should consider these findings when formatting regulations 
and incentives to ensure they address the most critical aspects 
of battery lifecycle management.

The following recommendations, derived from numerical 
findings and analysis, provide a roadmap for policymakers to 
enhance the sustainability and economic viability of EV bat-
tery lifecycle management.

1. Enhancing data collection and sharing: Governments 
should promote the establishment of comprehensive databases 
for battery usage and degradation data. This would improve 
model accuracy and enable better lifecycle management of EV 
batteries.

2. Establishing robust recycling standards: Implementing 
strict recycling standards can ensure that retired batteries are 
processed in an environmentally friendly manner, minimizing 
hazardous waste and promoting the recovery of valuable ma-
terials.

3. Supporting technological innovation: Investing in re-
search and development for advanced battery technologies and 
recycling processes can drive innovation, improve recycling 
efficiency, and reduce costs. This includes supporting the de-
velopment of more efficient battery degradation models.

4. Developing infrastructure for battery management: Build-
ing robust infrastructure for the collection, transportation, and 
processing of batteries is essential. This includes creating fa-
cilities for recycling and cascade utilization to ensure efficient 
handling of retired batteries.

5. Monitoring the advancements in battery technology: 
Adjustments to policy decisions regarding cascading utiliza-
tion should be made in response to changes in the patterns of 
battery capacity degradation, based on the prevailing circum-
stances.

In conclusion, this study provides insights for policymak-
ers and industry stakeholders and presents a path forward for 
improving the sustainability and economic viability of EV bat-
teries. Future research should continue to refine and expand to 
more complicated battery degradation models, to incorporate 
emerging data, and to explore new strategies to further enhance 
EV battery management. By doing so, we can ensure that the 
rapid growth of the EV industry contributes positively to both 
economic development and environmental sustainability.
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