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ABSTRACT: Sawtooth potentials—piecewise-linear potentials defined by alternating rising and falling slopes—have garnered
interest for their roles in classical Brownian ratchets, quantum transport, and flat bands in ultracold-atom lattices. However,
a general solution of the time-independent Schrédinger equation for an arbitrary asymmetric sawtooth potential and a study
of its band structure remain absent from the literature. We derive the exact analytical eigenstates in terms of Airy functions,
but due to numerical difficulty, we solved for the eigenstates using a piecewise constant "staircase approximation." We find
localized low-energy states confined within individual wells and plane waves for high energies. We apply the obtained solutions
to investigate the relationship between bandwidth and parameters of the sawtooth potentials, which could offer design principles
for realizing flatbands in condensed-matter and ultracold-atom research. We find that the bandwidth of the lowest energy band
is entirely independent of the sawtooth’s asymmetry, while it remains inversely correlated with potential height and cell size. The
methodologies presented here provide a toolkit for further exploration of sawtooth potentials.
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B Introduction

Sawtooth potentials, characterized by a pattern of regions
of increasing potential followed by regions of decreasing po-
tential, have long been of interest across many fields. Sawtooth
potentials are studied extensively in Brownian ratchet theo-
ry, where asymmetric sawtooth potentials are found to drive
unidirectional transport when energy input is used to switch
the potential between one of 2 states (a “flashing ratchet” that
rectifies Brownian transport)." Such properties of the classical
sawtooth potential are what drive motor proteins and many
other essential intracellular transport processes.” Quantum
mechanical treatment of sawtooth potentials also demonstrates
transport phenomena. By exposing Bose-Einstein condensates
to sawtooth-like optical lattices whose amplitudes are peri-
odically modulated with time, a directed atomic current is
observed despite the lack of dissipative processes.

Sawtooth potentials are of interest in condensed matter
physics for their ability to create flat bands.* A flat band is an
energy band where energy is largely independent of the crys-
tal momentum; this allows weak interactions to dominate. Flat
bands are theorized to host a wealth of exotic behaviors, in-
cluding high-T superconductivity, Wigner crystallization, and
complex ferromagnetic behaviors.” Ultracold atoms in tunable
optical lattices that have sawtooth characteristics have been
utilized to engineer a nearly flat energy band in the sawtooth
geometry.*

Much of the literature surrounding a quantum mechanical
treatment of sawtooth potentials focuses on their ability to drive
transport. A common area of study is to examine the transport
properties of the sawtooth potential through the Schréding-
er equation.*” The exact solution to an asymmetric V-shaped
potential has been used to investigate how the asymmetry of

a sawtooth potential could affect tunneling probabilities and
thus the transport properties of the sawtooth potential,® but
the solutions to the Schrédinger equation for the sawtooth po-
tential were never obtained. We will, in this paper, instead focus
on obtaining solutions to the time-independent Schrédinger
equation under a sawtooth potential, and examining its band
structure, neither of which has been done for a generally appli-
cable case in the literature. We hope the methods introduced in
this paper will help others research into the theory behind the
sawtooth potential, and that the findings may offer insight into
design principles for flat bands.

B Methods

Defining variables:

We first define the sawtooth potential by the following con-
stants (Figure 1). We consider a single sawtooth to be a section
of increasing potential, followed by a section of decreasing po-
tential. Let V4, be the height of the potential at the tip of the
sawtooth. Let the slope of the increasing side of the sawtooth
be %; and the decreasing side by %,. By definition, %2, > 0 and 4,
< 0. The total width T of a sawtooth will then be V“’” V“”’ .The
asymmetry § of a sawtooth potential will be given by the frac-
tion of the sawtooth across which the potential is rising, given
by the following &= with 0 <€ <1.
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Figure 1: The parameters for our sawtooth potential. Across a singular
sawtooth of size 7, the potential increases linearly to Vi, over a distance & 7,
then decreases linearly to 0 over a distance (1- )7

The eigenstates for a singular sawtooth:

Let’s examine the rising potential side with slope %4;. This
gives the potential function V(x) = Ax. Plugging into the
time-independent Schrédinger equation, we arrive at

h? d?

ﬁwd)(x) + xk P (x) = EY(x) (1)
R d? . B
%ﬁw(ﬁ + (xky —E)Y(x) =0 )

This differential equation is close to the form y”+xy = 0,
whose solution is known to be a linear combination of Airy
functions.® Our aim now will be to express the above differ-
ential equation in the form of y”+xy = 0. We first define a new
variable Za (ZMk ) For simplicity's sake, we will define
a constant a, = (2';‘2"")1/3 Note that our potential will still be de-
fined in terms of x. Rewriting the TISE in this variable with
n=1, we arrive at the following.

Z; = 3 (x - k%) 3)

h? d* 0 4
2mdx? zllJ( z) + lp(zl) = (4)

Applying the chain rule and the fact that 2, is linear in «x,
we arrive at
d? dz,\*
TP @) = (E) iz 'JJ( 1) =

and as a%/k,;=2m/h?,

d2
d_zlzlp(zl) +2z1(z) =0 (6)

The time-independent Schrodinger equation has been re-
duced to the form y”+xy = 0, as shown above, the solution to
which is shown below. Cy; and Cg are arbitrary constants,
where the number subscript denotes the value of n, and the
letter denotes whether its Ai(x) or Bi(x).

W(z,) = Cy14i(21) + Cp1Bi(zy) (7)

2 'J«'(Zl) <5)

Given that Bi(x) diverges as x—oo (Figure 2), Cy; = 0, as
otherwise the wavefunction will not be normalizable: {(x)
must vanish as x—*co. By plugging in %,, we obtain the wave-
function for the 2 sides of the sawtooth. Furthermore, the
wavefunction and its derivative must be continuous such that
the second derivative of the wavefunction present in the TISE
is defined. Hence, we enforce the following boundary condi-
tions at x = 0.

CapAi(—a E /ky) = CyrAi(—azE [k3) (8)

Cay  Ai(—ayE/k;)

Caz  Mi(—a,E/k) ®)
(continuity of the wavefunction)
Cax @ AVU(—ayE/k;)
K,z - a,Ai'(—a,E/ky) (10)

(continuity of the derivative)

This set of boundary conditions allows us to solve for the
values of En in the spectrum of the wavefunction. However,
given the non-elementary expression of the Airy functions,
solving for the spectrum will need to be done numerically.

o(@)n = {GA,QAi(ag(x —£)) 2<0

11
CarAi(ar(z— ) >0 )

Normalization of a single sawtooth and solving for the exact
values of C in this way can be done numerically. However, as
the goal is to extrapolate this solution to an infinite periodic
sawtooth potential, which is not normalizable over all x, we do
not discuss these results further.
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Figure 2: Ai(x) and Bi(x). Note Bi(x)’s divergence with increasing x.

The infinite periodic sawtooth potential:

When extrapolating our results from the previous section
to an infinite periodic sawtooth, we may include Bi(x) terms
as the function is never allowed to diverge to infinity, as each
length of the slopes in a sawtooth is finite. In the unit cell
at the origin, on the increasing slopes, we have the following
wave function.

Y1(z,) = C414i(z,) + Cp1Bi(z,) (12)
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And on the decreasing slopes, the wavefunction is
Y5(25) = Cu24i(2;) + Cp,Bi(2;) (13)

Where Cy 1, Cy 1, Ca 2, and Cp» are constants to be determined
through boundary conditions and subsequent normalization.
A reminder that z,=(2%)" (x-£) and a, - (%)”3. The boundary
conditions at x=0 are as follows

CArlAi(—alE/kl) + Cg‘lBi(—alE/kl)

= OAQAi(—G:zE/kg) —+ OB,QBi(—agE/kg) (14)
ach,lAi'(—alE/kl) —+ alc'B}IBi'(—a,lE/kl)

= Q‘,QCA)QAi’(—agE/kg) + ach’gBi’(—agE/kg) (15)

When employing boundary conditions for the points where
2 unit cells meet, we must apply Bloch's theorem, which states
that solutions to the Schrédinger equation in a periodic po-
tential can be expressed as plane waves modulated by periodic
functions.” Essentially, for periodic potentials that span the en-
tire x-axis, due to the translational symmetry of |{(x)|?, unit
cells of the overall wavefunction may only differ by a phase el
where 7'is the length of one unit cell.

P+ T) = e*h(x) (16)

This can be expressed as a boundary condition on our wave-
function and is given below.

Vtop E Vtop E
CarAi — =)+ CpiBi(—2 — —
anhi(an(ZF = g0) + OmaBi(3 =
) V; E Vi E
_ kT it & i(—r _ =
= ™ (C42Ai( i ) + CeaBi( kK ) (17)
, .V E . Vi B
CaaiAi (al(kt—jp - k_l) - CB,la-]BI’(al(ki_:p - k_1))
ik .. Viwp E Ve E
e*T(C 4 2azAi(a:( o E)) + Cpa2a2Bi(as( k: — E)) (18)

We apply this to our wavefunction at points where
V(x)=Vop- We note that this set of boundary conditions, after
rearranging for 0, is a homogeneous system of linear equations
where the variables are Cy 1, Cg1, Ca,, and Cp,,. For such sys-
tems, there is either only a trivial solution (Ca,;=Cp= Ca,=
Cg,=0) or an infinite number of solutions, of which we are
only interested in the latter. By rearranging Eq. 14-18 for 0,
We express this system of equations in matrix form, where M
represents the coefficient matrix for the aforementioned vari-

ables.

Ai(a) Bi(a) — Ai(B) - Bi(8) Can 0]
a;Ai'(e) a;Bi'(e) —azAi'(f) —a, Bi'(B) Cpa 0
M= . . T p- T 1 =
Ai(y) Bi(y) —e' T Ai(4) —e'*T Bi(4) Cas 0
a; Ai'(y) a1Bi'(y) —e*ay Ai'(d) —e*TayBi'(8)]| |Ca2 0]
_ a E
=
__mE
B= %
_ Viw EY\ _ a1(Vigp — E)
G R (19
o Viw EY  axVip—E)
aiag(kz _k_2)7 k2

The condition for an infinite number of solutions reduces to
det(M) = 0; we solve for the null space of M.!° The free vari-

able we are left with can then be determined by normalization.

An approximation:

An exact solution for Cy 1, Cp1, Cap, Csp and E is difficult
due to the many transcendental elements present inside M.
However, we can approximately solve for this potential by
using an approximation. We employ a piecewise-constant
approximation for our sawtooth potential. We discretize our
potential into IV equal-length "slices” of a constant potential
(Figure 3). The value of the constant potential is the midpoint
of the potential between the endpoints of the slice. The solu-
tion to this "staircase potential" asymptotically approaches
the solution of the exact sawtooth potential as N —oo. The
oscillatory solutions to the Schrodinger equation for a con-
stant potential are numerically more stable when one imposes
boundary conditions: Airy

h? d?

ﬁwlpn(x) + (V= E)Pp(x) =0 (20)

d? 2m(V, — E)

Wlpn(x) + Tlpn(x) =0 (21)
2m(V, — E

Kn = % Ipn(x) = e*rnx (22)

Vo (x) = P, cos(k,(x — ndx))
+ P, sin(k, (x — ndx)) (23)

Y, (x) = Pk, cos(xn(x — nAx))
- P, Knsin(}cn(x — nAx)) (24)

functions are oscillatory for x < 0 and then rapidly decaying/
growing for x > 0 (Figure 2).

Here we represent the exponential solutions in a trigono-
metric basis (though for energies greater than the potential,
they are hyperbolic as k becomes imaginary). To determine the
constants Py and P,, we employ a transfer matrix method.!
The transfer matrix Q_that propagates across one of the slices
is as follows.
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Yoz + Az)\ . o U ()
5 (o~ am) =t 2w (7))
(26) Qe +Ana) cos (K, (z — ) %sin(nn(:n—zu))
26 oz + Az, z) = "

— Ky sin(kn(z —zq))  cos(ka(z — x0))
We then multiply all transfer matrices for N slices to get the
overall transfer matrix for one unit cell, Q- In this paper,
N =500 was used. Enforcing the Bloch boundary conditions
returns an eigenvalue equation for the total transfer matrix
that then defines the allowed energies E and the dispersion
relationship.” This can further be simplified to an equation in

terms of Tr(Qyear)-
Tr (Qiotar) = 2cos(kT)

This equation was solved numerically using a root-finder
algorithm in MATLAB. Reconstructing the wave function
afterwards is straightforward. Note that one needs to choose
the initial values for P(x) and {’(x) at some arbitrary x. How-
ever, because of the arbitrariness of the overall phase for the
wavefunction and the subsequent unit cell normalization we
perform, the exact initial choice does not matter so long as the
initial transfer matrix is not singular.

Vix)

(27)

Veop [ommmmmmmmm e e e o o e e s

—
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Figure 3: The staircase potential. N=18 was used here for effect: N=500 is
used for actual results. The potential of the 4® slice 74 is taken as the potential
of the exact sawtooth potential at the midpoint of the slice xs.

B Result and Discussion

We used a piecewise constant approximation to obtain the
band structure for a sawtooth potential of arbitrary asymme-
try &, height Vi, rising slope 4y, and falling slope %, (Figure
4). From this, we reconstructed the solutions to the time-in-
dependent Schrodinger equation under a sawtooth potential.
Throughout all visualizations from here, we have taken mass
to be the mass of an electron (m = 9.11x10"*' kg). The band
structures were visualized up to the first Brillouin zone for 0
<k < /T sufficient to capture all the unique states due to the
periodicity of the Bloch phase.

We will now examine the wavefunction and the band
structure for § = 0.3, Vi, = 0.3V, and T'= Inm. Low energy
solutions (E < V) are localized within each well of the saw-
tooth (Figure 5). The general profile of the wave function did
not change significantly with energy for lower energies. In the
low-energy regime, the probability density peaks at the low-
est point of the sawtooth potential and dips throughout the
sawtooth itself, demonstrating significant localization. When

E > Viop, the solutions (Figure 6 and Figure 7) resemble plane
waves with some periodic modulations, as one would expect.
Our methodology allows us to freely change the & (Figure 8).
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Figure 4: The band structure for § =0.3, ¥;,, = 0.3eV, and T'= 1nm. One can
see that the first band is the flattest. It will be the focus of the next analysis.
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Figure 5: Probability density at E = 0.148¢V for § = 0.3, ¥;,, = 0.3eV, and
T =1nm. The probability density has been shown in blue, and the potential is
shown in orange for effect. Low-energy solutions are highly localized, as one
would expect.
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Figure 6: Probability density at E = 1.073eV for § =0.3, ¥, = 0.3¢V,and T

=Inm. As energy increases, the solutions are more reminiscent of plane waves.
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Figure 7: Probability density at E = 1.631eV for § = 0.3, ¥, = 0.3eV, and
T =1nm. At high energies, solutions resemble plane waves with periodic
modulations.
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Figure 8: Probability density at E = 1.005¢V for £ = 0.1, ¥;,, = 0.3¢V, and T'
=1nm. Our methodology still works for more extreme values of §.

Asymmetry and band structure:

We mentioned before that sawtooth potentials have been
studied for their ability to create "flat bands", bands of very
low bandwidth (slowly varying E with k) that are experimen-
tally useful in studying weak interactions. By examining how
the width of the lowest energy band varies with parameters of
the lattice ( Viop , §, and T'), we better understand under what
conditions flat bands are observed in sawtooth potentials.

We find no dependence of the bandwidth on € at a constant
Viop = 0.3eV, and T=1nm (Figure 8). This is quite an inter-
esting result, but we can motivate it through a semi-classical
treatment of the potential. The tunneling amplitude through
a singular sawtooth, and thus bandwidth, is dependent on the
integral of the square root of V(x) over the classically forbidden
region for a singular sawtooth.'>”® The classically forbidden
region for a particle with E < Vi, is given by Vig,/k, s x < E/
ky, and E/k; <x < Vtop/kl. The WKB action over the region is
then given by

E/ks .
Sp = f \/2m(kaz — E (Vmp B2, (27)
Viep/ k2
Viop/ k1
Sp = 2m (kyx — Viep — E)3/2. 28
Rfm J2m bz LEIT (28)
\/ (L 1
§=Su+Sn= """ (Viep — E) (k—l—k—z) (29)

Since T = % - V;—:’ ,without changing 7, the WKB action and
thus the tunneling amplitude are not dependent on the asym-
metry. Thus, we might expect the bandwidth of the first band
not to depend on asymmetry &. This is unique to the sawtooth
potential: a general skewing of a potential function that leaves
the area under the function unchanged would not leave the
WKB action unchanged due to the square root in the WKB
integral. When altering &, one side becomes steeper but short-
er, and the other becomes less steep but longer. The 2 effects
happen to compensate perfectly in the case of linear functions
so that the overall “tunneling difficulty” is unchanged.

05

Bandstructure of the 1st band (eV)

-0.5

| L i L L ! L s i
0.05 0.1 0.15 0.2 0.25 03 0.35 04 045 0.5
13

Figure 9: Bandwidth of first band (eV) vs & for V,,, = 0.3eV, and T'= 1nm.
Bandwidth is not affected by & as rationalized through a semiclassical approach.

Vips T, and band structure:

The effect of potential height Vo, and cell length 7"on band
structure for a general periodic potential is well document-
ed.” We will briefly present the effects of these parameters
as applied to the sawtooth potential. We find that there is a
strong correlation between the Vi, and the bandwidth of the
1% band. As Vi, increases, the tunneling amplitude across
the unit cell decreases, and the bandwidth of the first band
decreases (Figure 9). Similarly, as T increases, the tunneling
amplitude decreases, thus decreasing the bandwidth of the 1+
band (Figure 10).

First-band bandwidth vs V‘op
0.36

0.34 1

First-band bandwidth (eV)
o o
i ° P
3 B 5

4
o
>

o
Y
b

L L L il L L k! s i
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Vlop (eV)

Figure 10: Bandwidth of first band (eV) vs ¥, (V) for € = 0.3, T'= 1nm.
Bandwidth decreases with ¥, as one would expect.
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Figure 11: Bandwidth of first band (eV') vs T (nm) for ¥;,, = 0.3eV, T'= Inm.
Bandwidth decreases with T, as one would expect.

B Conclusion

The solutions to the time-independent Schrodinger equa-
tion for a sawtooth potential were presented and visualized.
We applied the solutions and the band structure to investi-

11

DOI: 10.36838/v8i2.7



ijhighschoolresearch.org

gate the relationship between the bandwidth of the first band
and parameters Vi, , §, and T. As is true for general periodic
potentials, we found that increasing Vi, or T decreased the
bandwidth, but interestingly, that £ had no impact on the band-
width, which we then motivated with a semiclassical treatment
of the system. These findings could offer insights into parame-
ter choices for flat bands in sawtooth potentials, demonstrating
the utility of the obtained solutions. Furthermore, being able to
alter & without affecting the bandwidth would allow us to alter
the transport properties of the sawtooth whilst retaining a flat
band and amplifying weak interactions.>” Next steps could in-
clude solving numerically using Airy functions instead of using
a piecewise constant approximation to provide more accurate
solutions. Further research could be conducted on irregular
sawtooth potentials with individual sawtooth potentials of
varying shapes and sizes.
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