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ABSTRACT: Sawtooth potentials—piecewise‐linear potentials defined by alternating rising and falling slopes—have garnered 
interest for their roles in classical Brownian ratchets, quantum transport, and flat bands in ultracold‐atom lattices. However, 
a general solution of the time‐independent Schrödinger equation for an arbitrary asymmetric sawtooth potential and a study 
of its band structure remain absent from the literature. We derive the exact analytical eigenstates in terms of Airy functions, 
but due to numerical difficulty, we solved for the eigenstates using a piecewise constant "staircase approximation." We find 
localized low‐energy states confined within individual wells and plane waves for high energies. We apply the obtained solutions 
to investigate the relationship between bandwidth and parameters of the sawtooth potentials, which could offer design principles 
for realizing flatbands in condensed‐matter and ultracold‐atom research. We find that the bandwidth of the lowest energy band 
is entirely independent of the sawtooth’s asymmetry, while it remains inversely correlated with potential height and cell size. The 
methodologies presented here provide a toolkit for further exploration of sawtooth potentials.  

KEYWORDS: Physics and Astronomy, Theoretical, Computational and Quantum Physics, Solid State Physics, Sawtooth 
Potentials, Flat bands. 

�   Introduction
Sawtooth potentials, characterized by a pattern of regions 

of increasing potential followed by regions of decreasing po-
tential, have long been of interest across many fields. Sawtooth 
potentials are studied extensively in Brownian ratchet theo-
ry, where asymmetric sawtooth potentials are found to drive 
unidirectional transport when energy input is used to switch 
the potential between one of 2 states (a “flashing ratchet” that 
rectifies Brownian transport).1 Such properties of the classical 
sawtooth potential are what drive motor proteins and many 
other essential intracellular transport processes.2 Quantum 
mechanical treatment of sawtooth potentials also demonstrates 
transport phenomena. By exposing Bose-Einstein condensates 
to sawtooth-like optical lattices whose amplitudes are peri-
odically modulated with time, a directed atomic current is 
observed despite the lack of dissipative processes.3

Sawtooth potentials are of interest in condensed matter 
physics for their ability to create flat bands.4 A flat band is an 
energy band where energy is largely independent of the crys-
tal momentum; this allows weak interactions to dominate. Flat 
bands are theorized to host a wealth of exotic behaviors, in-
cluding high-T superconductivity, Wigner crystallization, and 
complex ferromagnetic behaviors.5 Ultracold atoms in tunable 
optical lattices that have sawtooth characteristics have been 
utilized to engineer a nearly flat energy band in the sawtooth 
geometry.4

Much of the literature surrounding a quantum mechanical 
treatment of sawtooth potentials focuses on their ability to drive 
transport. A common area of study is to examine the transport 
properties of the sawtooth potential through the Schröding-
er equation.3-7 The exact solution to an asymmetric V-shaped 
potential has been used to investigate how the asymmetry of 

a sawtooth potential could affect tunneling probabilities and 
thus the transport properties of the sawtooth potential,6 but 
the solutions to the Schrödinger equation for the sawtooth po-
tential were never obtained. We will, in this paper, instead focus 
on obtaining solutions to the time-independent Schrödinger 
equation under a sawtooth potential, and examining its band 
structure, neither of which has been done for a generally appli-
cable case in the literature. We hope the methods introduced in 
this paper will help others research into the theory behind the 
sawtooth potential, and that the findings may offer insight into 
design principles for flat bands.

�   Methods
Def ining variables:
We first define the sawtooth potential by the following con-

stants (Figure 1). We consider a single sawtooth to be a section 
of increasing potential, followed by a section of decreasing po-
tential. Let Vtop be the height of the potential at the tip of the 
sawtooth. Let the slope of the increasing side of the sawtooth 
be k1 and the decreasing side by k2. By definition, k1 > 0 and k2 
< 0. The total width T of a sawtooth will then be	      . The  
asymmetry ξ of a sawtooth potential will be given by the frac-
tion of the sawtooth across which the potential is rising, given 
by the following	 , with 0 <ξ <1.
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The eigenstates for a singular sawtooth:
Let’s examine the rising potential side with slope k1. This 

gives the potential function V(x) = k1x. Plugging into the 
time-independent Schrödinger equation, we arrive at

(1)

(2)

This differential equation is close to the form y’’ +xy = 0, 
whose solution is known to be a linear combination of Airy 
functions.8 Our aim now will be to express the above differ-
ential equation in the form of y’’ +xy = 0. We first define a new 
variable                                 . For simplicity's sake, we will define 
a constant 	       . Note that our potential will still be de-
fined in terms of x. Rewriting the TISE in this variable with 
n=1, we arrive at the following.

(3)

(4)

Applying the chain rule and the fact that zn is linear in x, 
we arrive at

(5)

and as a³/k1=2m/ℏ²,

(6)

The time-independent Schrodinger equation has been re-
duced to the form y’’ +xy = 0, as shown above, the solution to 
which is shown below. CA,1 and CB,1 are arbitrary constants, 
where the number subscript denotes the value of n, and the 
letter denotes whether its Ai(x) or Bi(x).

(7)

Given that Bi(x) diverges as x→∞ (Figure 2), CB,1 = 0, as 
otherwise the wavefunction will not be normalizable: ψ(x) 
must vanish as x→±∞. By plugging in k2, we obtain the wave-
function for the 2 sides of the sawtooth. Furthermore, the 
wavefunction and its derivative must be continuous such that 
the second derivative of the wavefunction present in the TISE 
is defined. Hence, we enforce the following boundary condi-
tions at x = 0.

(8)

(9)

(continuity of the wavefunction)

(10)

(continuity of the derivative)
This set of boundary conditions allows us to solve for the 

values of En in the spectrum of the wavefunction. However, 
given the non-elementary expression of the Airy functions, 
solving for the spectrum will need to be done numerically.

(11)

Normalization of a single sawtooth and solving for the exact 
values of C in this way can be done numerically. However, as 
the goal is to extrapolate this solution to an infinite periodic 
sawtooth potential, which is not normalizable over all x, we do 
not discuss these results further.

The inf inite periodic sawtooth potential:
When extrapolating our results from the previous section 

to an infinite periodic sawtooth, we may include Bi(x) terms 
as the function is never allowed to diverge to infinity, as each 
length of the slopes in a sawtooth is finite. In the unit cell 
at the origin, on the increasing slopes, we have the following 
wave function.

(12)
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Figure 1: The parameters for our sawtooth potential. Across a singular 
sawtooth of size T, the potential increases linearly to Vtop over a distance ξ T, 
then decreases linearly to 0 over a distance (1- ξ )T.

Figure 2: Ai(x) and Bi(x). Note Bi(x)’s divergence with increasing x.
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And on the decreasing slopes, the wavefunction is

(13)

Where CA,1, CB,1, CA,2, and CB,2 are constants to be determined 
through boundary conditions and subsequent normalization. 
A reminder that zn=	            and               .  . The boundary 
conditions at x=0 are as follows

(14)

(15)

When employing boundary conditions for the points where 
2 unit cells meet, we must apply Bloch's theorem, which states 
that solutions to the Schrödinger equation in a periodic po-
tential can be expressed as plane waves modulated by periodic 
functions.9 Essentially, for periodic potentials that span the en-
tire x-axis, due to the translational symmetry of |ψ(x)|², unit 
cells of the overall wavefunction may only differ by a phase eikT 
where T is the length of one unit cell.

(16)

This can be expressed as a boundary condition on our wave-
function and is given below.

(17)

(18)

We apply this to our wavefunction at points where 
V(x)=Vtop. We note that this set of boundary conditions, after 
rearranging for 0, is a homogeneous system of linear equations 
where the variables are CA,1, CB,1, CA,2, and CB,2,. For such sys-
tems, there is either only a trivial solution (CA,1=CB,1= CA,2= 
CB,2=0) or an infinite number of solutions, of which we are 
only interested in the latter. By rearranging Eq. 14-18 for 0, 
We express this system of equations in matrix form, where M 
represents the coefficient matrix for the aforementioned vari-
ables.

(19)

The condition for an infinite number of solutions reduces to 
det(M) = 0; we solve for the null space of M.10 The free vari-
able we are left with can then be determined by normalization.

An approximation:
An exact solution for CA,1, CB,1, CA,2, CB,2 and E is difficult 

due to the many transcendental elements present inside M. 
However, we can approximately solve for this potential by 
using an approximation. We employ a piecewise-constant 
approximation for our sawtooth potential. We discretize our 
potential into N equal-length "slices" of a constant potential 
(Figure 3). The value of the constant potential is the midpoint 
of the potential between the endpoints of the slice. The solu-
tion to this "staircase potential" asymptotically approaches 
the solution of the exact sawtooth potential as N →∞. The 
oscillatory solutions to the Schrodinger equation for a con-
stant potential are numerically more stable when one imposes 
boundary conditions: Airy

(20)

(21)

(22)

(23)

(24)

functions are oscillatory for x < 0 and then rapidly decaying/
growing for x > 0 (Figure 2).

Here we represent the exponential solutions in a trigono-
metric basis (though for energies greater than the potential, 
they are hyperbolic as κ becomes imaginary). To determine the 
constants P1 and P2, we employ a transfer matrix method.11 
The transfer matrix Q that propagates across one of the slices 
is as follows.
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E > Vtop, the solutions (Figure 6 and Figure 7) resemble plane 
waves with some periodic modulations, as one would expect. 
Our methodology allows us to freely change the ξ (Figure 8).

(25)

(26)

We then multiply all transfer matrices for N slices to get the 
overall transfer matrix for one unit cell, Qtotal. In this paper, 
N = 500 was used. Enforcing the Bloch boundary conditions 
returns an eigenvalue equation for the total transfer matrix 
that then defines the allowed energies E and the dispersion 
relationship.11 This can further be simplified to an equation in 
terms of Tr(Qtotal).

(27)

This equation was solved numerically using a root-finder 
algorithm in MATLAB. Reconstructing the wave function 
afterwards is straightforward. Note that one needs to choose 
the initial values for ψ(x) and ψ’(x) at some arbitrary x. How-
ever, because of the arbitrariness of the overall phase for the 
wavefunction and the subsequent unit cell normalization we 
perform, the exact initial choice does not matter so long as the 
initial transfer matrix is not singular.

�   Result and Discussion 
We used a piecewise constant approximation to obtain the 

band structure for a sawtooth potential of arbitrary asymme-
try ξ, height Vtop, rising slope k1, and falling slope k2 (Figure 
4). From this, we reconstructed the solutions to the time-in-
dependent Schrodinger equation under a sawtooth potential. 
Throughout all visualizations from here, we have taken mass 
to be the mass of an electron (m = 9.11x10-31 kg). The band 
structures were visualized up to the first Brillouin zone for 0 
≤ k ≤ π/T sufficient to capture all the unique states due to the 
periodicity of the Bloch phase.

We will now examine the wavefunction and the band 
structure for ξ = 0.3, Vtop = 0.3eV, and T = 1nm. Low energy 
solutions (E < Vtop) are localized within each well of the saw-
tooth (Figure 5). The general profile of the wave function did 
not change significantly with energy for lower energies. In the 
low-energy regime, the probability density peaks at the low-
est point of the sawtooth potential and dips throughout the 
sawtooth itself, demonstrating significant localization. When 
DOI: 10.36838/v8i2.7

Figure 3: The staircase potential. N=18 was used here for effect: N=500 is 
used for actual results. The potential of the 4th slice V₄ is taken as the potential 
of the exact sawtooth potential at the midpoint of the slice x₄.

Figure 4: The band structure for ξ = 0.3, Vtop = 0.3eV, and T = 1nm. One can 
see that the first band is the flattest. It will be the focus of the next analysis.

Figure 5: Probability density at E = 0.148eV for ξ = 0.3, Vtop = 0.3eV, and 
T =1nm. The probability density has been shown in blue, and the potential is 
shown in orange for effect. Low-energy solutions are highly localized, as one 
would expect.

Figure 6: Probability density at E = 1.073eV for ξ = 0.3, Vtop = 0.3eV, and T 
=1nm. As energy increases, the solutions are more reminiscent of plane waves.

Figure 7: Probability density at E = 1.631eV for ξ = 0.3, Vtop = 0.3eV, and 
T =1nm. At high energies, solutions resemble plane waves with periodic 
modulations.
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Vtop, T, and band structure:
The effect of potential height Vtop and cell length T on band 

structure for a general periodic potential is well document-
ed.13 We will briefly present the effects of these parameters 
as applied to the sawtooth potential. We find that there is a 
strong correlation between the Vtop and the bandwidth of the 
1st band. As Vtop increases, the tunneling amplitude across 
the unit cell decreases, and the bandwidth of the first band 
decreases (Figure 9). Similarly, as T increases, the tunneling 
amplitude decreases, thus decreasing the bandwidth of the 1st 
band (Figure 10).

�   Conclusion 
The solutions to the time-independent Schrodinger equa-

tion for a sawtooth potential were presented and visualized. 
We applied the solutions and the band structure to investi-

Asymmetry and band structure:
We mentioned before that sawtooth potentials have been 

studied for their ability to create "flat bands", bands of very 
low bandwidth (slowly varying E with k) that are experimen-
tally useful in studying weak interactions. By examining how 
the width of the lowest energy band varies with parameters of 
the lattice ( Vtop , ξ, and T ), we better understand under what 
conditions flat bands are observed in sawtooth potentials.

We find no dependence of the bandwidth on ξ at a constant 
Vtop = 0.3eV, and T=1nm (Figure 8). This is quite an inter-
esting result, but we can motivate it through a semi-classical 
treatment of the potential. The tunneling amplitude through 
a singular sawtooth, and thus bandwidth, is dependent on the 
integral of the square root of V(x) over the classically forbidden 
region for a singular sawtooth.12,13 The classically forbidden 
region for a particle with E < Vtop is given by Vtop/k2 ≤ x ≤ E/
k2 and E/k1 ≤ x ≤ Vtop/k1. The WKB action over the region is 
then given by

(27)

(28)

(29)

Since                        , without changing T, the WKB action and 
thus the tunneling amplitude are not dependent on the asym-
metry. Thus, we might expect the bandwidth of the first band 
not to depend on asymmetry ξ. This is unique to the sawtooth 
potential: a general skewing of a potential function that leaves 
the area under the function unchanged would not leave the 
WKB action unchanged due to the square root in the WKB 
integral. When altering ξ, one side becomes steeper but short-
er, and the other becomes less steep but longer. The 2 effects 
happen to compensate perfectly in the case of linear functions 
so that the overall “tunneling difficulty” is unchanged.
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Figure 8: Probability density at E = 1.005eV for ξ = 0.1, Vtop = 0.3eV, and T 
=1nm. Our methodology still works for more extreme values of ξ.

Figure 9: Bandwidth of first band (eV) vs ξ for Vtop = 0.3eV, and T = 1nm. 
Bandwidth is not affected by ξ as rationalized through a semiclassical approach.

Figure 10: Bandwidth of first band (eV) vs Vtop (eV) for ξ = 0.3, T = 1nm. 
Bandwidth decreases with Vtop, as one would expect.

Figure 11: Bandwidth of first band (eV) vs T (nm) for Vtop = 0.3eV, T = 1nm.  
Bandwidth decreases with T, as one would expect.
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gate the relationship between the bandwidth of the first band 
and parameters Vtop , ξ, and T. As is true for general periodic 
potentials, we found that increasing Vtop or T decreased the 
bandwidth, but interestingly, that ξ had no impact on the band-
width, which we then motivated with a semiclassical treatment 
of the system. These findings could offer insights into parame-
ter choices for flat bands in sawtooth potentials, demonstrating 
the utility of the obtained solutions. Furthermore, being able to 
alter ξ without affecting the bandwidth would allow us to alter 
the transport properties of the sawtooth whilst retaining a flat 
band and amplifying weak interactions.3-5 Next steps could in-
clude solving numerically using Airy functions instead of using 
a piecewise constant approximation to provide more accurate 
solutions. Further research could be conducted on irregular 
sawtooth potentials with individual sawtooth potentials of 
varying shapes and sizes.
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