

Innovations in Skin Regeneration: The Intersection of 3D Bioprinting and Single-Cell RNA Sequencing

Jihoo Hyun

Canyon Crest Academy, 5951 Village Center Loop Rd, San Diego, CA 92130, USA; 0903stella@gmail.com

ABSTRACT: The combination of single-cell RNA sequencing (scRNA-seq) and 3D bioprinting technologies is transforming the field of skin tissue engineering by providing unmatched levels of accuracy and control at the cellular level. This article is on the revolutionary developments in skin regeneration with these technologies. Although 3D bioprinting allows one to print intricate tissue architecture similar to native skin, it also creates challenges of scalability and proper vascularization. scRNA-seq overcomes these limitations by offering high-resolution information regarding cellular heterogeneity and gene expression patterns in bioprinted tissues. Merging these technologies, scientists can engineer bioprinting approaches and create more proficient biomaterials to finally boost the regenerative potential and function of fabricated skin tissues. This review offers a systematic overview of the latest research, emphasizing the synergy between 3D bioprinting and scRNA-seq, with their respective contribution to the improvement of skin regeneration and the development of more accurate and effective therapeutic strategies.

KEYWORDS: Biomedical Engineering, Biomaterials and Regenerative Medicine, Skin Regeneration, 3D Bioprinting, Single-Cell RNA Sequencing.

■ Introduction

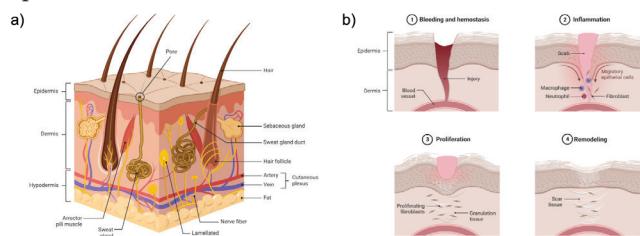
Skin regeneration is an important field of regenerative medicine, where technology plays a key role in enhanced clinical outcomes in the event of burns, chronic wounds, or trauma.¹ As the largest organ and the initial barrier against insults of the external environment, skin is a complex, multilayered tissue with heterogeneous cell populations and extracellular components having specific biological functions. Rebuilding the architecture and functionality of damaged skin is challenging, and traditional grafts or scaffolds are insufficient to meet these demands.²

The breakthroughs in biomedical engineering have presented us with two technologically powerful weapons for overcoming these challenges: single-cell RNA sequencing (scRNA-seq) and 3D bioprinting. Both emergent technologies are rapidly transforming skin tissue engineering with mutually complementary advantages. scRNA-seq enables one to perform high-resolution transcriptomic analysis on the cellular level, which enables researchers to reveal cellular heterogeneity, gene expression variation, and differentiation programs with unprecedented accuracy.³ This information is crucial to fine-tune cell selection and molecular target identification to guide tissue regeneration.

Simultaneously, 3D bioprinting provides the spatially controlled bioprinting of living cells and biomaterials to produce structured skin constructs with both structural and functional homology to native tissue. By virtue of the capability to model the epidermal, dermal, and hypodermal stratified structure, 3D bioprinting makes it possible to create tissue models addressed to specific patient requirements.⁴ Combining scRNA-seq and 3D bioprinting offers unparalleled potential to boost the biological fidelity, integration, and therapeutic potency of engineered skin tissues.⁵

As highlighted by Murphy and Atala,⁴ 3D bioprinting has already demonstrated success in constructing anatomically precise and viable tissue analogues, setting the stage for broader clinical applications. Moreover, Farage *et al.*³ emphasize that both intrinsic and extrinsic factors, such as aging, environmental exposure, and systemic conditions, profoundly influence skin regeneration, further validating the need for advanced approaches that integrate both structural and molecular considerations. The convergence of these technologies marks a new era in skin regeneration, bringing us closer to developing functional, patient-specific skin grafts for real-world therapeutic use.

■ Literature Review Approach


This review synthesizes existing literature on 3D bioprinting and single-cell RNA sequencing in the context of skin tissue engineering. It includes peer-reviewed journal articles from fields such as tissue engineering, regenerative biology, and bioinformatics. Key studies were selected based on relevance, methodological rigor, and impact on the field. Emphasis was placed on studies integrating both bioprinting techniques and transcriptomic analysis. No direct experimental work was conducted; instead, a comprehensive literature analysis approach was used.

■ Advances in Skin Regeneration Technologies

Structure and Function of Human Skin:

The barrier function of the skin is intimately associated with its stratified nature, in which each stratum has a specific role in its protective capabilities. The epidermis, made up primarily of keratinocytes, is a hard, impermeable barrier to water that

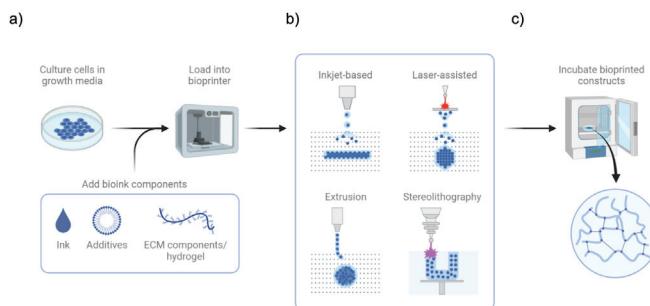
guards against dehydration and invasion by microorganisms. Injury to this stratum jeopardizes the protective capability of the skin and makes it vulnerable to infection. The dermis, located beneath the epidermis, contains collagen and elastin and is responsible for strength and elasticity, and contains vital structures such as blood vessels, nerve endings, hair follicles, and sweat glands. Injury to the dermis, due to second-degree burns, can destabilize these structures and affect functions such as thermoregulation, regulation of moisture, and sensation. The hypodermis, which is the innermost layer, is a store of energy, an insulator, and a shock absorber. Injury to this layer compromises the body's ability to regulate temperature and cushion against physical trauma.¹ Additionally, deeper wounds can damage nerves and blood vessels, causing pain, numbness, and impaired circulation.² Figure 1 illustrates the layered structure of the skin and its key anatomical features involved in protection and function.

Figure 1: The body's largest organ, the skin, is made up of three main layers: the epidermis, dermis, and hypodermis. The outer layer, the epidermis, creates our color and a water-repellent barrier. The layer underneath the epidermis, the dermis, is made up of hard connective tissue, hair follicles, and sweat glands. The bottom layer, the hypodermis, is made up of fat and connective tissue. These layers combined shield the body from environmental damage, pathogens, and physical trauma.⁶

Healing Process and Regeneration Challenges:

The skin's healing process involves four overlapping stages: hemostasis, inflammation, proliferation, and remodeling. Hemostasis begins immediately after trauma, with the clotting of blood to prevent unnecessary loss of blood. Next, there is inflammation, where the immune cells clean out the debris and combat any infection. During the proliferation phase, new tissue formation takes place, including the regeneration of the epidermis and collagen deposition in the dermis. Remodeling finally tightens the new tissue and adapts it for function.⁷

Serious injury presents enormous difficulties for this process. Severe damage has the potential to create faulty regeneration, chronic wounds, or scarring, which is not as fully functional as normal skin. And illnesses like impaired blood supply, infection, and recurrent trauma can also delay healing.¹ Diabetic ulcers, for instance, may not move beyond the healthy stages of healing, stuck in an extended inflammatory phase that does not allow tissue formation.⁸ And besides, large wounds need massive amounts of tissue formation, which the body cannot provide on its own in adequate amounts, resulting in fibrous scar tissue that doesn't have the same elasticity or tensile strength as healthy skin.⁹


Clinical Importance of Skin Regeneration:

Skin is the body's largest organ, serving as a crucial barrier against environmental damage, pathogens, and physical in-

juries. Effective skin regeneration is vital for treating burns, chronic wounds, and other skin-related conditions. The ability to restore the skin's structure and function can significantly improve patients' quality of life and reduce healthcare costs associated with long-term wound care. Seven million people worldwide suffer from severe skin injuries each year. For example, the World Health Organization (WHO) estimates that burns alone cause approximately 180,000 deaths annually, with the majority occurring in low- and middle-income countries. Additionally, chronic wounds such as diabetic ulcers affect millions more, leading to prolonged hospital stays, frequent medical interventions, and a substantial financial burden on healthcare systems.¹⁰

■ 3D Bioprinting in Skin Tissue Engineering Overview and Techniques:

3D bioprinting represents an emerging method of additive manufacturing that enables the precise production of tissue constructs through sequential deposition of bioinks, often consisting of living cells, growth factors, and biomaterials. A computer-aided design model instructs the spatial organization of bioinks in three-dimensional space to allow for the fabrication of intricate tissue structures mimicking hierarchically organized skin units in native skin. In skin tissue engineering, bioprinting can produce stratified layers that resemble the epidermis, dermis, and hypodermis, incorporating various cell types such as keratinocytes, fibroblasts, and melanocytes in their respective layers. These tissues may also be seeded with extracellular matrix (ECM) components such as collagen, hyaluronic acid, and fibrin to enhance the structural integrity and cell-cell interactions. 3D bioprinting by incorporating fine control of cell and biomaterial deposition provides the capability of tailoring tissue properties such as porosity, stiffness, and biochemical content, which are essential in replicating the functional and mechanical characteristics of native skin. Figure 2 outlines the key steps of the bioprinting workflow and illustrates various bioprinting techniques used to fabricate engineered tissues.

Figure 2: The process involves the use of various bioprinting techniques, such as inkjet bioprinting, extrusion bioprinting, and laser-assisted bioprinting, each with distinct advantages and limitations in terms of resolution, cell viability, and material compatibility.^{4,11} Inkjet bioprinting uses thermal or acoustic forces to deposit droplets of bioink, making it suitable for high-resolution printing of delicate structures. Extrusion bioprinting, which forces bioink through a nozzle, allows for continuous deposition and is ideal for constructing larger tissue volumes. Laser-assisted bioprinting employs laser energy to propel cells and biomaterials onto a substrate, providing high precision and control over the placement of individual cells.

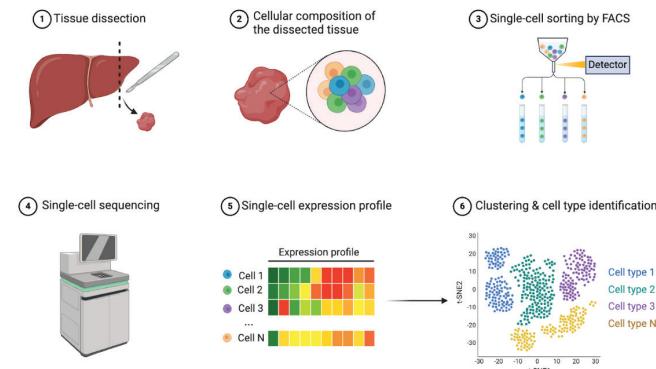
Recent trends in 3D bioprinting include multi-material printing, which enables the incorporation of different cell types and materials within a single construct to better mimic the natural tissue environment. This approach is particularly useful for creating skin tissues, which consist of multiple layers with distinct cellular compositions and functions. Advances in bioprinting also focus on enhancing vascularization within the printed tissues to ensure proper nutrient and oxygen supply, a critical factor for the viability and function of complex tissue constructs.¹² The use of bioactive materials that promote cell growth and differentiation is another important trend, as these materials can significantly improve the regenerative potential of bioprinted tissues.¹³

Innovations and Clinical Applications:

Precedents for the application of 3D bioprinting in tissue engineering include studies where bioprinting has been used to create complex structures such as vascularized tissues, cartilage, and bone. For instance, Homan *et al.* demonstrated the bioprinting of 3D renal structures that mimicked the function and structure of native kidney tissues.¹⁶ This study highlights the potential of bioprinting to create functionally relevant tissue constructs. Similarly, Daly *et al.* developed bioprinted cartilage constructs that closely resembled the mechanical properties and cellular organization of natural cartilage, showcasing the versatility of bioprinting in generating various tissue types.¹⁷ Moreover, Zhang *et al.* successfully created bioprinted bone tissues with integrated vascular networks, emphasizing the importance of vascularization for the survival and integration of bioprinted tissues.¹⁸

Studies have demonstrated the potential of 3D bioprinted tissues to replicate the structural and functional properties of native skin, making them suitable for clinical applications. For example, Kador *et al.* combined 3D printing with radial electrospun scaffolds to control retinal ganglion cell positioning and neurite growth, demonstrating the precision of bioprinting in creating structured tissue environments.¹⁹ Intini *et al.* explored the use of 3D-printed chitosan-based scaffolds for skin regeneration, finding that these scaffolds supported skin cell growth and wound healing effectively.²⁰ Kandarova and Hayden utilized standardized reconstructed skin models to study cellular responses to different bioprinting strategies, providing detailed insights into the optimization of bioprinting techniques for skin tissue engineering.²¹

Bioactive Materials and Multi-Material Printing:


The development of bioactive materials and the incorporation of multiple cell types within bioprinted constructs represent significant advancements in the field. Zhu *et al.* highlighted the use of bioinks containing growth factors and ECM components to enhance cell proliferation and differentiation, improving the overall functionality of bioprinted tissues.²² The use of multi-material printing techniques enables the creation of more complex tissue architectures, better replicating the natural environment of skin tissues and enhancing their regenerative potential.

The rapid advancements in 3D bioprinting for skin tissue engineering have been tempered by persistent challenges that limit its full potential, such as achieving effective vascularization, scalability, and the precision needed to replicate the complex architecture of natural skin.^{12,13} Additionally, the standardization of bioinks remains an obstacle.¹⁴ These limitations underscore the need for complementary technologies like single-cell RNA sequencing (scRNA-seq), which provides a detailed understanding of cellular heterogeneity and gene expression dynamics at the single-cell level. By integrating scRNA-seq with 3D bioprinting, researchers can refine tissue constructs, ensuring that the cellular composition and function closely mirror those of native tissues.^{3,15} This integration not only enhances the reproducibility and functionality of bioprinted tissues but also opens new avenues for the development of more effective and clinically applicable skin regeneration therapies.

■ Integration of Single-Cell RNA Sequencing (scRNA-seq)

Role in Analyzing Bioprinted Tissues:

Single-cell RNA sequencing (scRNA-seq) provides high-resolution insights into the transcriptomic landscape of individual cells, making it a powerful tool for understanding cellular heterogeneity, identifying distinct cell populations, and tracking gene expression changes during tissue regeneration. Figure 3 illustrates the key steps involved in scRNA-seq, from tissue dissection to sequencing and cell type identification, highlighting its utility in regenerative studies.

Figure 3: This technology involves isolating individual cells, reverse transcribing their RNA into complementary DNA (cDNA), and sequencing the cDNA to obtain detailed gene expression profiles. The resulting data can be used to construct a comprehensive map of cellular states and interactions within a tissue, revealing the molecular mechanisms underlying tissue regeneration and repair.^{3,15}

Applications in Regenerative Studies:

As the field of skin tissue engineering advances, it becomes clear that integrating innovative technologies is essential for overcoming current limitations and enhancing regeneration outcomes. Despite the significant progress made with 3D bioprinting, challenges such as scalability, precision, and effective vascularization persist. This is where single-cell RNA sequencing (scRNA-seq) emerges as a transformative tool. By providing high-resolution insights into the transcriptomic landscape of individual cells, scRNA-seq allows researchers to

analyze the cellular composition and gene expression profiles of bioprinted tissues. This integration supports the validation and optimization of bioprinting strategies, leading to more functional and reliable skin constructs. The following sections highlight various studies that demonstrate the synergy between scRNA-seq and 3D bioprinting in the context of skin regeneration.

Use Cases in Skin Regeneration:

Precedents for using scRNA-seq in similar contexts include studies on the regenerative processes in other tissues and organs. For instance, scRNA-seq has been used to profile the cellular landscape of regenerating heart tissue, providing insights into the roles of various cell types during cardiac repair.²³ Similarly, scRNA-seq has been employed to study the cellular dynamics in regenerating liver tissue, identifying key regulatory genes and pathways involved in liver regeneration.²⁴ In the field of neural tissue engineering, scRNA-seq has helped uncover the heterogeneity of neural stem cells and their differentiation pathways, facilitating the development of more effective strategies for neural regeneration.²⁵

In the context of skin tissue engineering, scRNA-seq is particularly valuable for analyzing the cellular composition and gene expression profiles of bioprinted tissues. By comparing these profiles to those of native skin, researchers can assess the degree of similarity and identify areas for improvement in the bioprinting process. This approach has been used to validate the efficacy of various bioprinting strategies and biomaterials, providing crucial information for optimizing tissue engineering techniques.^{3,15} For example, scRNA-seq can reveal differences in the expression of key genes involved in skin development, inflammation, and wound healing, allowing researchers to fine-tune the bioprinting parameters and improve the functional integration of bioprinted tissues. Solé-Boldo *et al.* demonstrated the application of scRNA-seq in understanding stem cell heterogeneity within engineered tissues, aiding in the optimization of cellular compositions and functional outcomes in bioprinted constructs.²⁶ Additionally, Guo *et al.* utilized scRNA-seq to evaluate cellular dynamics in skin regeneration, revealing key pathways that contribute to tissue integration and repair.²⁷ Similarly, Tabib *et al.* applied scRNA-seq to assess immune cell infiltration in bioprinted skin models, leading to improved protocols for creating more immunocompatible tissue constructs.¹⁵

Another notable application is in the study of skin aging, where scRNA-seq has been used to identify age-related changes in cellular composition and gene expression in human skin. This research has provided valuable insights into the molecular mechanisms of skin aging and potential targets for rejuvenation therapies.²⁶ Additionally, scRNA-seq has been utilized to investigate the immune response in wound healing, revealing the roles of various immune cell populations in tissue repair and the resolution of inflammation.²⁷

Integration of scRNA-seq and 3D Bioprinting in Skin Tissue Engineering:

Building on the advancements discussed in enhancing regenerative potential, studies exemplifying the use of single-cell RNA sequencing (scRNA-seq) and 3D bioprinting in skin tissue engineering are critical for advancing the field. These studies underscore the importance of effective skin regeneration in medical treatments and wound healing. Intini *et al.* revealed that chitosan-based scaffolds support skin cell growth, with scRNA-seq confirming their alignment with chitosan regenerative properties.²⁰ Farage *et al.* demonstrated that silk fibroin hydrogels, analyzed via scRNA-seq, promote scarless skin regeneration by recruiting specific cell populations.³ Additionally, Tabib *et al.* used scRNA-seq to identify age-related declines in dermal sheath cells, suggesting potential rejuvenation strategies.¹⁵ Kandarova and Hayden applied scRNA-seq to optimize bioprinted skin models, enhancing the precision of bioprinting techniques.²¹ Kolesky *et al.* validated the integration of vascular networks in bioprinted tissues through scRNA-seq, emphasizing vascularization's role in tissue viability.¹² Finally, Kim *et al.* highlighted the optimization of bioinks that mimic the extracellular matrix, with scRNA-seq confirming their role in promoting tissue regeneration.⁵ Collectively, these studies demonstrate the pivotal role of integrating scRNA-seq with 3D bioprinting to advance skin tissue engineering, improving outcomes in addressing severe burns, chronic wounds, and other skin-related medical conditions.

■ Current Challenges and Future Perspectives

Despite the promising results, several challenges remain. These include the scalability of bioprinted tissues, the standardization of bioinks, and the need for comprehensive bioinformatics tools to analyze scRNA-seq data.^{28,29} Advanced transcriptomic techniques, such as spatial transcriptomics and multi-omics approaches, are being integrated to provide more precise and context-aware insights into cellular behavior within bioprinted tissues. For example, spatial transcriptomics allows for the mapping of gene expression within the spatial architecture of tissues, providing valuable information on how different cell types organize and function within engineered constructs.³⁰ Additionally, single-cell multi-omics approaches combine scRNA-seq with other modalities like epigenomics and proteomics to capture a more comprehensive profile of cellular states and interactions.³¹ The current limitations in the resolution and precision of bioprinting techniques need to be addressed to create more complex and functional tissue constructs. Furthermore, the integration of advanced bioinformatics tools is essential for managing and interpreting the vast amounts of data generated by scRNA-seq and related methods, which can provide deeper insights into the cellular processes underlying tissue regeneration. Future research should focus on developing advanced bioinks that mimic the ECM, optimizing bioprinting techniques to enhance cell viability, and employing scRNA-seq, spatial transcriptomics, and multi-omics approaches to continuously validate and refine tissue engineering approaches.^{5,32}

Conclusion and Outlook

The marriage of 3D bioprinting and single-cell RNA sequencing (scRNA-seq) represents an advancement in skin tissue engineering. These novel technologies share complementary strengths that overcome the shortcomings of conventional techniques and maximize the regenerative capabilities of engineered skin tissues. 3D bioprinting is renowned for having the strength of spatial structural control, the potential to develop complex tissue architecture resembling the native skin structure in its details. But it has remained confronted by limitations such as scalability, vascularization, and standardization of the material.

scRNA-seq overcomes these limitations by achieving high-resolution access to molecular and cellular dynamics during tissue regeneration. By comparing bioprinted tissue cell composition and gene expression profiles, scRNA-seq enables us to tailor bioprinting approaches and create more effective biomaterial designs. This coexistence broadens our knowledge of skin regeneration and makes it possible to generate more functional and realistic skin constructions.

With research ongoing, the future progression and intersection of scRNA-seq and 3D bioprinting will be crucial to regenerative medicine advancement. The two technologies possess enormous potential for expanding patient advantages as well as developing new, more effective treatments for skin repair and regeneration, guiding the future of tissue engineering.

Acknowledgments

I would also like to express my gratitude to my Stanford University mentor, whose support, guidance, and critical remarks were vital in directing this research. His regenerative medicine and tissue engineering knowledge was invaluable in helping me articulate my ideas and significantly added value to the quality of this review.

References

1. Singer, A. J., & Clark, R. A. (1999). Cutaneous wound healing. *New England Journal of Medicine*, 341(10), 738–746.
2. Tiwari, V. K. (2012). Burn wound: How does it differ from other wounds? *Indian Journal of Plastic Surgery*, 45(2), 364–373.
3. Farage, M. A., Miller, K. W., Elsner, P., & Maibach, H. I. (2008). Intrinsic and extrinsic factors in skin ageing: A review. *International Journal of Cosmetic Science*, 30(2), 87–95.
4. Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. *Nature Biotechnology*, 32(8), 773–785.
5. Kim, G., Ahn, S., Yoon, H., Kim, Y., & Chun, W. (2009). A cryogenic direct-plotting system for fabrication of 3D collagen scaffolds for tissue engineering. *Journal of Materials Chemistry*, 19(46), 8817–8823.
6. Proksch, E., Brandner, J. M., & Jensen, J. M. (2008). The skin: An indispensable barrier. *Experimental Dermatology*, 17(12), 1063–1072.
7. Gurtner, G. C., Werner, S., Barrandon, Y., & Longaker, M. T. (2008). Wound repair and regeneration. *Nature*, 453(7193), 314–321.
8. Falanga, V. (2005). Wound healing and its impairment in the diabetic foot. *The Lancet*, 366(9498), 1736–1743.
9. Broughton, G., Janis, J. E., & Attinger, C. E. (2006). The basic science of wound healing. *Plastic and Reconstructive Surgery*, 117(7S), 12S–34S.
10. Sen, C. K., Gordillo, G. M., Roy, S., et al. (2009). Human skin wounds: A major and snowballing threat to public health and the economy. *Wound Repair and Regeneration*, 17(6), 763–771.
11. Groll, J., Boland, T., Blunk, T., et al. (2016). Biofabrication: Re-appraising the definition of an evolving field. *Biofabrication*, 8(1), 013001.
12. Kolesky, D. B., Homan, K. A., Skylar-Scott, M. A., & Lewis, J. A. (2016). Three-dimensional bioprinting of thick vascularized tissues. *Proceedings of the National Academy of Sciences*, 113(12), 3179–3184.
13. Zhang, Y. S., Arneri, A., Bersini, S., et al. (2017). Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip platforms. *Biomaterials*, 110, 45–59.
14. Zhu, W., Qu, X., Zhu, J., et al. (2016). Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. *Biomaterials*, 124, 106–115.
15. Tabib, T., Morse, C., Wang, T., et al. (2018). Single-cell RNA-seq identifies pathogenic fibroblasts in autoimmune disease. *Nature*, 563, 229–233.
16. Homan, K. A., Kolesky, D. B., Skylar-Scott, M. A., et al. (2016). Bioprinting of 3D convoluted renal proximal tubules on perfusible chips. *Scientific Reports*, 6, 34845.
17. Daly, A. C., Cunniffe, G. M., Sathy, B. N., et al. (2016). 3D bioprinting of developmentally inspired templates for whole bone organ engineering. *Advanced Healthcare Materials*, 5(18), 2353–2361.
18. Zhang, Y. S., Arneri, A., Bersini, S., et al. (2017). Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip platforms. *Biomaterials*, 110, 45–59.
19. Kador, K. E., Grogan, S. P., Dorthé, E. W., et al. (2016). Control of retinal ganglion cell positioning and neurite growth: Combining 3D printing with radial electrospun scaffolds. *Tissue Engineering Part A*, 22(3–4), 286–294.
20. Intini, C., Elviri, L., Cabral, J., et al. (2018). 3D-printed chitosan-based scaffolds: An in vitro study of human skin cell growth and an in vivo wound healing evaluation in experimental diabetes in rats. *Carbohydrate Polymers*, 199, 593–602.
21. Kandarova, H., & Hayden, P. J. (2021). Standardised reconstructed skin models in toxicology and pharmacology: State of the art and future development. *Handbook of Experimental Pharmacology*, 265, 57–71.
22. Zhu, W., Qu, X., Zhu, J., et al. (2016). Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. *Biomaterials*, 124, 106–115.
23. Sereti, K. I., Zhang, Y., Arneri, A., et al. (2018). Single-cell RNA sequencing of regenerating heart tissue reveals heterogeneity in cell state and lineage relationships. *Nature Communications*, 9, 4436.
24. Halpern, K. B., Shenhav, R., Matcovitch-Natan, O., et al. (2017). Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. *Nature*, 542, 352–356.
25. Zeisel, A., Hochgerner, H., Lönnberg, P., et al. (2018). Molecular architecture of the mouse nervous system. *Cell*, 174(4), 999–1014.
26. Solé-Boldo, L., Raddatz, G., Schütz, S., et al. (2020). Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming. *Nature Aging*, 1, 123–135.
27. Guo, X., Zhang, Y., Zheng, L., et al. (2018). Single-cell RNA-seq reveals the temporal diversity and dynamics of immune cells during acute inflammation. *Cell Reports*, 25(4), 1125–1136.

28. Varani, J., Dame, M. K., Rittie, L., *et al.* (2006). Decreased collagen production in chronologically aged skin. *The American Journal of Pathology*, 168(6), 1861–1868.
29. Zou, Z., Long, X., Zhao, Q., *et al.* (2021). Ageroprotective effect of the HES1 transcription factor. *Nature Communications*, 12(1), 4412.
30. Philippeos, C., Telerman, S. B., Oulès, B., *et al.* (2018). Spatial and single-cell transcriptional profiling identifies functionally distinct human dermal fibroblast subpopulations. *The Journal of Clinical Investigation*, 128(4), 1780–1795.
31. Keriquel, V., Oliveira, H., Rémy, M., *et al.* (2017). *In situ* printing of mesenchymal stromal cells, by laser-assisted bioprinting, for *in vivo* bone regeneration applications. *Scientific Reports*, 7(1), 1778.
32. Komez, A., Yildiz, A., & Ozcelik, B. (2016). Construction of a patterned hydrogel-fibrous mat bilayer structure to enhance skin regeneration. *Journal of Materials Chemistry B*, 4(15), 2550–2558.

■ Authors

Jihoo Hyun is a junior at Canyon Crest Academy with interests in genetics, tissue engineering, and bioinformatics. She hopes to pursue biomedical research and has participated in multiple biology and computer science programs.