ijhighschoolresearch.org

[JHSR

Cracking the Seizure Code: Leveraging Bi-LSTM Models for
Neonatal EEG Interpretation and Seizure Classification

Sonali Santhosh
Hanford High School, 450 Hanford St, Richland, Washington, 99354, USA; sonalisanthosh08s@gmail.com

BERESEARCH ARTICLE

ABSTRACT: This research investigates how Bidirectional Long Short-Term Memory (Bi-LSTM) networks can be used to
identify neonatal seizures from EEG data, with an emphasis on mirroring expert neurologist annotations rather than independently
predicting seizures themselves. Timely detection of seizures in infants is crucial in Neonatal Intensive Care Units (NICUs);
however, traditional methods often delay critical intervention and treatment. Machine learning offers a promising alternative
solution. For this study, EEG data from 79 neonates within a publicly available dataset were cleaned, filtered, split into appropriate
segments, and processed so the model could learn most effectively. The Bi-LSTM model, trained over eight epochs, achieved an
overall accuracy of 83%. A key limitation of this study is the absence of “ground truth,” as even expert annotations are subjective,
which introduces variation within the training data. Additionally, the overlap between seizure and normal brain activity in the
EEG signals contributes to lower model accuracy in certain patient cases. Nevertheless, this study highlights the potential of Bi-
LSTM models in enhancing neonatal seizure detection and improving long-term outcomes for vulnerable neonates, offering an
essential step toward faster, more effective diagnosis in NICUs.

KEYWORDS: Computational Biology and Bioinformatics, Computational Neuroscience, EEG Pattern Recognition, Neonatal
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B Introduction

The neonatal period is a critical stage in which the infant’s
brain is particularly vulnerable. During this period, the brain
undergoes rapid changes, characterizing it as a time of high risk
for various neurological conditions. One of the most common
neurological conditions is seizures, described by Huff & Murr
as changes in the degree of “consciousness, behavior, memory, or
feelings.” Seizures are often caused by atypical, unconstrained
electrical activity in the brain.! The prevalence of neonatal sei-
zures in the general population is roughly 1.5%, with the overall
occurrence being three per every 1000 live births. However,
given the chance, a newborn is born prematurely, prevalence
increases to around 57-132 per 1000 live births.? The most
common cause of neonatal seizures is hypoxic-ischemic en-
cephalopathy (HIE), a type of brain damage resulting from the
lack of oxygen to the brain soon after delivery. Although they
can also be caused by a variety of other factors, such as stroke,
cranial blood clots, and other brain defects.® Not all seizures
tend to have long-lasting effects since many are brief and only
momentary. Regardless, prolonged neonatal seizures can lead
to permanent brain damage, especially if they are not detected
early enough.*

Currently, expert neurologists diagnose seizures in neonates
by analyzing the patients’ electroencephalogram (EEG) data,
which measures the general electrical activity in various regions
of the brain. Most often, however, they require specialized ex-
perts like pediatric neurologists to be able to diagnose neonates
with higher efficacy. This results from the unique pathophysi-
ology and electrographic findings of infants' EEG data, causing
it to be more difficult to identify their seizures specifically.

Most frequently, newborns do not show similar visual signs of
seizures to adult patients, such as full-body convulsions. Their
“symptoms” often appear to look like normal baby behavior,
for instance, thrashing legs or random eye movements, along
with a sucking tongue. Additionally, newborns may even have
symptoms, such as jitteriness or sleep myoclonus, that tend to
mimic seizure activity, even in the absence of genuine seizures.’
Due to the lack of clear observable clinical manifestations,
physicians must rely on more advanced brain monitoring tech-
niques to accurately diagnose the presence of seizure activity
in newborns. The most preferred method is continuous video
EEG monitoring, allowing clinicians to determine if unusual
features are seizures.® Once a seizure is detected or simply sus-
pected, physicians may perform laboratory testing and other
imaging modalities such as head ultrasonography and magnet-
ic resonance imaging (MRI) to confirm potential causes before
treatment. If continuous video EEG monitoring is inacces-
sible, practitioners may turn to amplitude-integrated EEG
(aEEG). Amplitude-integrated EEG, described as being able
to “present time-compressed and filtered EEG data,” offers an
alternative method for areas lacking the support that contin-
uous video EEG monitoring requires.” However, aEEG does
have a low sensitivity, which can lead to false negatives in the
diagnosis, potentially allowing seizure activity to go undetect-
ed. Unfortunately, the entire process of traditional detection is
costly, time-consuming, and does not guarantee full accuracy as
annotations vary from professional to professional. Moreover,
if a neonate is not diagnosed and treated in a timely fashion,
the damage to the developing brain could cause “cognitive
disorders, developmental delay, epilepsy, or cerebral palsy,” dis-
playing the crucial need for rapid diagnosis.” A faster, reliable
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diagnostic method would significantly benefit the medical
specialty of neonatology.

A rising consideration in medicine is the use of Machine
Learning (ML). Machine Learning allows for diagnosis
beyond what the naked eye can detect and is anticipated to im-
prove many areas of medicine, including accuracy, prediction
methods, and quality of patient care.® At the moment, ML
positions itself in a more supportive role in healthcare, easing
the workload of physicians. In large facilities, machine learn-
ing techniques have been implemented in a multitude of ways,
such as in record organization, medical imaging, and robot-as-
sisted surgeries.® Countless studies have worked with EEG
for seizure detection, leading to the possibility of earlier and
more accurate seizure detection. However, implementing those
computational methods on patients in real clinical settings will
require further development as ML continues to evolve. Nev-
ertheless, once it does, patients with neurological conditions,
such as epilepsy, will receive significantly improved outcomes.

Neural networks, a subset of ML, have been well-studied for
their use in the medical field.” Recently, with the increasing
availability of public EEG data, many types of Neural Net-
works have been used, particularly to detect seizures. Recurrent
Neural Networks (RNNs) deal with sequential, time-evolving
data, which makes them well-suited for analyzing time-series
data such as EEG signals, in which the order of information is
essential. However, there is a lack of research on investigating
RNN¥’ effectiveness in neonatal seizure detection. Addition-
ally, this research solely relies on the key assumption that by
treating annotations from human expert neurologists as the
“ground truth”, we are accurately detecting seizures within all
of these infants. Building on the strengths of RNNs, the model
essentially functions as a universal classifier, designed to gen-
eralize across multiple patients rather than being specialized
for a specific neonate. This approach allows the model to learn
and understand patterns that apply to a wider range of EEG
data, making it useful for diverse clinical settings. This univer-
sal classification approach ensures that the model is accurate
across varying cases and not limited to a single patient’s data.

In this study, Recurrent Neural Networks (RNNs) were pro-
posed for their ability to process sequential data and capture
temporal dependencies, such as those of EEG data, specifi-
cally Bidirectional Long Short-Term Memory Networks
(Bi-LSTMs), a certain type of RNN. Although traditional
RNNs function as a valuable model in ML, they frequently
experience a certain challenge known as the vanishing gradient
problem. This occurs during backpropagation when the gradi-
ent becomes increasingly small until it ultimately “vanishes.”
Normal LSTMs overcome this issue by their additive update
mechanism, with the use of gates. Specifically, the LSTM ar-
chitecture is constructed of the following parts: a cell, an input
gate, a forget gate, and an output gate. The forget gate is what
allows the model to reset its state.!® And the Bidirectional
portion allows the LSTM to view data from both forward
and backward time standpoints. Thus, this study intends to
address the following research question: To what degree can
a Bi-LSTM model accurately capture and interpret complex
associations between neonatal EEG data and clinician-labeled

annotations, and how accurately can it classify seizure events
across diverse patient data?

B Methods

Dataset:

The dataset chosen required high-quality data, corre-
sponding annotations, and a large diversity. This was found
in a publicly available dataset labeled “A Dataset of Neonatal
EEG Recordings with Seizure Annotations.” The dataset
has EDF files available for multi-channel EEG recordings for
seventy-nine term neonates, a MAT file for the visual inter-
pretations of the data, and a CSV file with the corresponding
clinical information for each patient. The data was recorded
from the Neonatal Intensive Care Unit at the Helsinki Uni-
versity Hospital, Finland, one of Europe’s largest healthcare
providers. Out of the seventy-nine neonates, seizure consensus
variability was visible with 39 infants labeled as seizure-prone
and 22 labeled as seizure-free. The interquartile range for
the EEG recordings was broad, from 64 to 96 minutes, with
a median recording duration of 74 minutes, and the signals
themselves were sampled at 256 Hz. The EEG recordings’
visual interpretations were annotated independently by three
expert neurologists and stored in a MAT file for further use.
The specialists defined seizure activity as visible on the EEG
recordings when there was an “emergence of abnormal dis-
charges in bursts, termed ictal epileptiform discharges...
Escalate in frequency, evolving into rapid, continuous spikes
and waves, and ultimately peak with numerous spikes accom-
panied by buried waves.”> Annotations from the three experts,

however, are also accessible in individual CSV files, catego-
rized as ‘A, ‘B’, and ‘C’.

Data Preprocessing:

Several preprocessing steps were carried out to prepare data
for input into the model, including bad signal removal, band-
pass filtering, segmentation in fixed-length epochs, feature
selection, and standardization. The EEG recording dataset
has 21 total channels, with the bipolar montage displayed in
Figure 1; however, two of those channels are Electrocardio-
gram (ECG) and Respiratory Effort Channels. Unnecessary
noise, spike waves, and artifacts caused by the extra channels
may corrupt training, so to prevent contamination of the pure
EEG data, removal of the ECG and Resp-Effort Channels
was required. The raw continuous EEG data is then band-pass
filtered from 0.1 to 15 Hz due to the range capturing the rel-
evant brainwave frequencies associated with neonatal seizures
while minimizing noise. Afterward, the neonatal EEG data
is segmented into epochs of one second each, corresponding
with the annotations per patient.
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Figure 1: The bipolar montage represents the 21 EEG electrodes used in
collecting the neonatal data used in the model. This montage follows the
standard 10-20 system used globally for electrode placement, certifying
comprehensive data collection. The recorded data was later processed and
analyzed to train the Bi-LSTM efficiently for neonatal seizure detection.
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Figure 2: The statistical features breakdown displays the mean, E(x), which
refers to the average of all n data points collected, and the variance, Var(x),
describing the average squared distance from the mean, or in simpler terms,
the standard deviation of the data, squared. Skewness, S(x), indicates the
measure of the asymmetry of the expected value (E) in the classic distribution
of the data, and kurtosis, K(x), measures the "tailedness" or the sharpness of

the peak in the data distribution, indicating how much of the variance in the
data is due to extreme values.'

Kurtosis : K(x) = E

Statistical features regarding mean, variance, skewness, and
kurtosis were extracted from the data (Figure 2). In addition to
statistical features, time-domain features (I'DF) and frequen-
cy-domain features (FDF) were also extracted. Within the
TDE, zero crossing and peak-to-peak features were combined
into a vector for each epoch. Zero Crossing calculates the
number of times the EEG signal waves' amplitude values cross
the zero-amplitude level.** Peak-to-peak measures the differ-
ence between the maximum and minimum value of the EEG
signals, showcasing the range or variation within the signals.
Referring to the frequency domain, Power Spectral Density
(PSD) was calculated. PSD measures the “signal’s power con-
tent versus frequency,” applied through Welch’s method.™ The
following three feature vectors, statistical features, time-do-
main features, and frequency-domain features, were combined,
leading to one large feature matrix, used as the input for the
model. The data was then split at 70:30; 70% of the data was
used for training (74,276 training samples), while the other

30% was used for testing and validation (31,833 testing sam-
ples), as seen in the input shapes for the training and testing
datasets. Lastly, the complete feature set data was standardized
post-split for further accuracy. Standardization is where each
data value is scaled to be centered around the mean with a
standard deviation of one. This allows for increased model re-
liability by allowing it to learn necessary patterns in the data
more effectively.

Since the EEG data was annotated by three separate neurol-
ogists, to improve results, the 3 CSV files were first imported
as arrays and then combined into a matrix based on majority
voting. Hence, a value is only added as ‘1’ if two or more an-
notators marked that epoch as seizure activity. Otherwise, the
value is added as ‘0’ or normal brain activity. This allows for
more consistency by considering consensus between multiple
neurologists. Neonates that did not contain any positive ‘1’ val-
ues were then removed from the training set.

Model Architecture:

The model was built using the Keras Sequential Model,
which is beneficial for efficiently stacking multiple layers.
The architecture of this model was adapted from a study by
Zeedan et al., with significant adaptations to better suit the
feature selection requirements of this research.'® Two Bidi-
rectional Long Short-Term Memory (Bi-LSTM) layers were
included with 64 units each to capture the necessary tempo-
ral dependencies. A Bi-LSTM creates an additional layer of
the reverse structure to produce more efficient information
than traditional LSTM-based models or even basic RNNs."”
The Bi-LSTM layers used activation functions of hyperbol-
ic tangent or TanH, which are commonly implemented for
RNN . Afterwards, two Dense layers were added with 32 and
one unit(s) respectively for binary classification, each with
Rectified Linear or ReLu activation functions. Several regular-
ization techniques were used to prevent overfitting, including
Dropout, implemented at a rate of 0.1, allowing the network to
be readjusted with an alternate group of neurons discarded for
every training sample. Aside from Dropout, Batch Normaliza-
tion, and L2 Regularization were also implemented to prevent

overfitting (Figure 3).
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Figure 3: The following visual represents the architecture that the model
utilized. The first layer depicts a Bi-LSTM layer of 64 units, in which the
neural network receives its input matrix of (74276, 1, 2489), applies its
transformations, and releases its output to the next layer, which in this case is
a Dropout Layer. This layer effectively releases 10% of its neurons to increase
variability within the model’s training, before inputting it into another Bi-
LSTM layer, where this cycle repeats once more. The data then enters a Dense
layer with 32 units for further data processing before reaching the respective
Dropout Layer. In the final stretch, Batch Normalization increases the stability
of the activation functions by normalizing the data, and the following Flatten
Layer converts the multi-dimensional output into a single vector. Lastly, the
data is input into a Dense Layer with one sole unit, allowing the model to
binarily classify the output as seizure or non-seizure data.
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The ADAM (Adaptive Moment Estimation) optimizer
was used because of its fast convergence and is widely accept-
ed as the best choice for optimizers in similar problems. The
ADAM optimizer is set with a learning rate of 0.01. Most
often, ADAM is used with a learning rate of either 0.01 or
0.001; however, a learning rate of 0.001 is better suited for
image classification tasks rather than temporal features in our
case.” The model was then trained with 8 epochs using the
Binary Cross-Entropy loss function, most widely accepted for
binary classification tasks. To handle the clear class imbalance
present in the data, with most epochs having an output of 0,
or normal brain activity, in all the neonates present in the data,
the Synthetic Minority Oversampling Technique (SMOTE)
was implemented to create synthetic data points for the mi-
nority class. In this case, positive ‘1’ values indicating seizure
activity were boosted through SMOTE to help balance the
distribution of the data across the training sets, allowing the
model to learn the patterns of both classes equally.

Evaluation Metrics:

The model’s overall performance was evaluated using a
variety of metrics. A confusion matrix calculates the False
Negative, True Negative, False Positive, and False Negative
values, along with a traditional classification report with the
performance measurement tools displayed for the F1-Score,
Recall, Precision, and Accuracy. Lastly, the Area Under the
Receiver Operating Characteristic Curve (AUC-ROC) was
calculated to understand the correlation between the True
Positive Rate and False Positive Rate.

B Results and Discussion

The resulting Bi-LSTM model was able to achieve accuracy
rates of individual patients in a range from as low as 56% to
as high as 93%. Overall, the model obtained an accuracy of
83% across the testing dataset of all 79 individuals. Although
it was able to accurately classify 91% of neonates with a lack of
seizure activity as negative, it was only able to diagnose 53% of
neonates having a seizure as positive. These results are shown
in the Confusion Matrix presented in Figure 4. As indicated,
the Bi-LSTM tended to perform better with negative cas-
es. The model had a Precision rate of 88%, a Recall of 90%,
and an F1-score of 89% for predicting lack of seizure activity.
However, the model only had a Precision rate of 58%, a Recall
of 53%, and an F1-score of 55% for predicting the presence of
seizure activity in neonates. This explains that the model has a
high specificity but a low sensitivity.

Normal Activity

Expert Annotated Label

Seizure Activity

Normal Activity

Model Predicted Label

Seizure Activity

Figure 4: Each quarter of the confusion matrix displays a different outcome.
The bottom left corner shows the false negative rate, or when the model
misinterprets seizure activity as normal brain activity. The bottom right
corner shows the true positive rate when the model accurately predicts seizure
activity. The top left corner shows the true negative rate when the model
accurately predicts normal brain activity. Lastly, the top right corner shows
the false positive rate, or when the model misinterprets normal brain activity
as seizure activity.

During the model's training process, the loss and accuracy
graphs (Figures 5 and 6) suggest strong overfitting. In Figure
5, the validation loss is shown not to decrease significantly after
running through the epochs, while the training loss continues
to drop. Figure 6 supports this by showing oscillations in val-
idation accuracy while training accuracy is increasing steadily
throughout the entire training process. This gap between train-
ing and testing performance suggests that the Bi-LSTM was
becoming overly specialized to the training data, even with
techniques set in place attempting to reduce overfitting, such
as Dropout, Batch Normalization, and L2 regularization. Thus,
this reduced its ability to generalize to new, unseen cases. These
observations align with the model's habit of performing well
on negative cases while struggling with positive cases.

Training Loss vs Validation Loss.

—— Training Loss
Validation Loss

0 1 2 3 4 5 6 7
Epochs

Figure 5: Displays the training vs. validation loss across multiple epochs.
Training loss is depicted as consistently decreasing toward zero. Validation loss,
on the other hand, plateaus around 0.42 to 0.44, indicating clear overfitting
within the Bi-LSTM model.
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Training Accuracy vs Validation Accuracy
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Figure 6: Displays the training vs. validation accuracy across multiple
epochs. Training loss is depicted as consistently increasing toward one, while
validation accuracy fluctuates near 0.81, indicating the model is becoming
overly specialized to the training data itself.

Lastly, both the Confusion Matrix (Figure 4) and ROC
curve (Figure 7) highlight the model’s ability to reduce False
Negatives while emphasizing the need for clearer detection of
True Positive events. The Area Under the Curve (AUC) score
is 0.808, which, although it is a significant jump from random
prediction at 0.5 AUC, still requires large model improvement
necessary in determining differences between seizure versus
non-seizure EEG data.

ROC Curve using Probabilities

—— ROC (AUC = 0.808)
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0.6 1

0.4 4
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T T
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Figure 7: Represents the correlation between the false positive and
true positive rate of the Bi-LSTM model through the receiver operating
characteristic (ROC) curve.

Seizure vs. Non-Seizure Epochs:

By comparing EEG data examples from both groups, we can
better see how the model decides to make its choices. Figures
7 and 8 display a side-by-side comparison of correctly classi-
fied seizure and non-seizure events, revealing the brain wave
features that the Bi-LSTM was able to accurately understand.

In Figure 7, the non-seizure epochs display consistent brain
wave patterns with limited spikes or sudden shifts. On the
other hand, Figure 8, which shows seizure epochs, has cha-
otic activity, sharp peaks, and large amplitude changes that
aren’t seen often in non-seizure states. These differences like-
ly influenced how the model made its predictions. However,

as observed, the distinction between these two classes isn’t as
clear throughout all the infants, explaining why the accura-
cy varied considerably. Some cases had overlapping patterns,
which could have led to the model missing certain seizures.
To improve detection, further improvements to the model are
needed, especially for less clear seizure cases.

Average Non-Seizure Epoch (19 channels) Naye=5450

0.5 A
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w
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0.0 0.2 0.4 0.6 0.8
Time (s)

Figure 8: Illustrates the average EEG epoch across nineteen channels that
were identified as normal brain activity for a single patient. Brain waves are
characterized by minimal spikes or abrupt shifts, indicating the absence of
seizures within the segment of data.

Average Seizure Epoch (19 channels) Nave=1543
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Figure 9 : Showcases the average EEG epoch across nineteen channels that
were identified as seizure activity for a single patient. Visually depicts key
features that distinguish the data from a normal EEG segment to both the
Bi-LSTM model and neurologists.

Discussion:

The Bi-LSTM achieved an overall accuracy of 83%, demon-
strating the model’s ability to distinguish between normal and
seizure epochs. The model's sensitivity refers to the number of
correctly diagnosed True Positive events, or accurately diag-
nosed seizure events, over the total amount of seizure events
in the EEG data. The specificity of this model refers to the
number of correctly diagnosed True Negative events, or ac-
curately classified non-seizure events, over the total amount
of regular events in the EEG data. One of the key strengths
of this model was its high specificity. The model was able to
accurately diagnose 90% of non-seizure epochs, demonstrating
the model’s reliability in classifying normal cases without the
presence of any seizure activity. However, the model did lack
sensitivity. The Bi-LSTM model was only able to accurately
diagnose 53% of seizure epochs, as reflected in the confusion
matrix (Figure 4). This distinction indicates that, while the
model performs well in detecting normal brain activity in neo-
natal patients, it may overlook more subtle seizure patterns,
resulting in the lower sensitivity rates presented. The resulting
false negatives are particularly concerning with infants, how-
ever, since missed seizures could result in delayed treatment
options. This issue emphasizes the need for increased sensitiv-
ity, even if it comes at the cost of a lower specificity.
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Limitations:

These complications can be caused by the various limitations
present in the data. First of all, even the medical profession-
als who annotated the dataset struggled with determining a
positive case. The three annotators all had varying annotations
with each patient within the dataset. Some would consider one
epoch a sign of key seizure activity, while others would label the
same epoch as a negative case. Attempts to combat this issue
were made by combining the three neurologists’ annotations
and using the majority rule to determine the information used
in the model. However, this did not guarantee that the model
was tested on true information, as although the majority rule
relies upon consensus, one cannot state that the consensus was
100% valid. The accuracy of the model depends on the accuracy
of the expert’s annotations, which will always remain uncertain.
Some results that were analyzed as False Positives could in-
deed mean the patient has symptoms of seizure activity, and
the experts had just overlooked it in the analysis. Nonetheless,
there is no certain way to fully know whether these cases were
truly accurate or not. Thus, this model does not predict the
onset of neonatal seizures but showcases how close artificial in-
telligence can come to predicting the methods behind human
neurologists' annotation of neonatal seizures through the visual
analysis of EEG data. Each percentage of accuracy indicates
how similar the model came to predicting seizures in the way
human experts can.

Second, visual comparisons of the classified positive and
negative epochs (Figures 7 and 8) reveal key characteristics
that may have guided the model's predictions. Commonly,
non-seizure epochs exhibited regular-appearing EEG activity,
with no apparent erratic spikes and fluctuations seen in the
seizure epochs.

However, the overlap between normal and seizure-like ac-
tivity in certain patient cases very likely contributed to the
Bi-LSTM’s lower sensitivity. This is shown in the performance
of the model, which varies significantly across individuals, with
accuracy having an overall range of 56% to 93% across all 79
patients. Differences in EEG signal quality could have also
caused this variation, although the distinctiveness of seizure
patterns across patients in the lower range of accuracy certain-
ly impacted the model’s apparent performance. Neonates with
clearer seizure patterns were more easily classified, while those
with larger, ambiguous activity led to a lower sensitivity of the
model.

Third, analysis of the training process revealed strong signs
of overfitting, as indicated by the loss graph in Figure 5. The
validation loss oscillated frequently, never truly declining the
way the training loss was able to. This could have been averted
by running a larger number of epochs; however, the size of the
data led to numerous epochs becoming computationally pro-
hibitive. This caused the model to be overly specialized to the
training data and struggle with unseen cases in the testing data.

Future Work:

Significant improvements are required to improve the mod-
el’s sensitivity to neonatal seizure data. To enhance the model’s
performance and increase its clinical applicability, several

key areas for future study can be explored. First of all, using
advanced feature extraction techniques may provide more de-
tailed signals for seizure detection. Additionally, optimizing
the model architecture, possibly by using a more complex hy-
brid-based (Conv-LSTM) model, may provide more accurate
results. Lastly, during preprocessing, it may be beneficial to
analyze patient data separately and feed it through the mod-
el individually, rather than combining multiple patients’ data
as done in this study. These improvements could allow for
increased model accuracy and more personalized neonatal sei-
zure classification, resulting in better clinical outcomes.

B Conclusion

A Bidirectional Long Short-Term Memory (Bi-LSTM)
model was utilized in this study to analyze its usefulness in
predicting neonatal seizures relative to human experts. The
Bi-LSTM model was selected because of its effectiveness in
working with time series data, capturing both past and future
information simultaneously, without running into challenges
often seen with basic Recurrent Neural Networks. Three fea-
ture sets were extracted from the Helsinki dataset, involving
EEG data from 79 term infants, including statistical features,
time-domain features, and frequency-domain features. The
corresponding seizure annotations from three expert neurol-
ogists were combined based on majority rule and fed into the
model. The Bi-LSTM model achieved an overall accuracy as a
universal classifier for all 79 neonates of 83%.

Although the model was unable to predict the majori-
ty of seizure-activity instances, this research still represents a
valuable step toward improving neonatal care worldwide. En-
hancing early seizure detection, even with its valid limitations,
could facilitate earlier interventions in many critical cases, con-
sidering the model does indeed have a higher True Positive
rate than a False Positive Rate. Even now, it is difficult for less-
equipped healthcare facilities to attain the proper assistance
and tools required for suitable infant care, having to travel large
distances to larger hospitals during critical times. With the use
of Al, these hospitals may have an opportunity for rapid de-
tection before they can receive appropriate care from medical
professionals. That, in turn, has the potential to reduce the se-
verity and long-term neurological effects commonly associated
with neonatal seizures. Further improvements in this model
could enhance its sensitivity, offering even greater benefits to
the developmental outcomes and quality of life of the affected
newborns.

Thus, this study contributes to the ever-growing body of
knowledge on neonatal care and seizure detection by lever-
aging advanced recurrent neural network techniques. These
findings demonstrate the potential to enhance the timeliness
and accuracy of neonatal seizure detection. With further re-
finement and validation, this research approach holds promise
for future clinical applications, potentially improving outcomes
for newborns at risk of seizures. Combining artificial intelli-
gence's rapid computational power with clinicians' empathy
and observational expertise projects a revolution in the future
of neonatal patient care.
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