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ABSTRACT: This research investigates how Bidirectional Long Short-Term Memory (Bi-LSTM) networks can be used to 
identify neonatal seizures from EEG data, with an emphasis on mirroring expert neurologist annotations rather than independently 
predicting seizures themselves. Timely detection of seizures in infants is crucial in Neonatal Intensive Care Units (NICUs); 
however, traditional methods often delay critical intervention and treatment. Machine learning offers a promising alternative 
solution. For this study, EEG data from 79 neonates within a publicly available dataset were cleaned, filtered, split into appropriate 
segments, and processed so the model could learn most effectively. The Bi-LSTM model, trained over eight epochs, achieved an 
overall accuracy of 83%. A key limitation of this study is the absence of “ground truth,” as even expert annotations are subjective, 
which introduces variation within the training data. Additionally, the overlap between seizure and normal brain activity in the 
EEG signals contributes to lower model accuracy in certain patient cases. Nevertheless, this study highlights the potential of Bi-
LSTM models in enhancing neonatal seizure detection and improving long-term outcomes for vulnerable neonates, offering an 
essential step toward faster, more effective diagnosis in NICUs.  
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�   Introduction
The neonatal period is a critical stage in which the infant’s 

brain is particularly vulnerable. During this period, the brain 
undergoes rapid changes, characterizing it as a time of high risk 
for various neurological conditions. One of the most common 
neurological conditions is seizures, described by Huff & Murr 
as changes in the degree of “consciousness, behavior, memory, or 
feelings.” Seizures are often caused by atypical, unconstrained 
electrical activity in the brain.1 The prevalence of neonatal sei-
zures in the general population is roughly 1.5%, with the overall 
occurrence being three per every 1000 live births. However, 
given the chance, a newborn is born prematurely, prevalence 
increases to around 57–132 per 1000 live births.2 The most 
common cause of neonatal seizures is hypoxic-ischemic en-
cephalopathy (HIE), a type of brain damage resulting from the 
lack of oxygen to the brain soon after delivery. Although they 
can also be caused by a variety of other factors, such as stroke, 
cranial blood clots, and other brain defects.3 Not all seizures 
tend to have long-lasting effects since many are brief and only 
momentary. Regardless, prolonged neonatal seizures can lead 
to permanent brain damage, especially if they are not detected 
early enough.4

Currently, expert neurologists diagnose seizures in neonates 
by analyzing the patients’ electroencephalogram (EEG) data, 
which measures the general electrical activity in various regions 
of the brain. Most often, however, they require specialized ex-
perts like pediatric neurologists to be able to diagnose neonates 
with higher efficacy. This results from the unique pathophysi-
ology and electrographic findings of infants' EEG data, causing 
it to be more difficult to identify their seizures specifically. 

Most frequently, newborns do not show similar visual signs of 
seizures to adult patients, such as full-body convulsions. Their 
“symptoms” often appear to look like normal baby behavior, 
for instance, thrashing legs or random eye movements, along 
with a sucking tongue. Additionally, newborns may even have 
symptoms, such as jitteriness or sleep myoclonus, that tend to 
mimic seizure activity, even in the absence of genuine seizures.5 
Due to the lack of clear observable clinical manifestations, 
physicians must rely on more advanced brain monitoring tech-
niques to accurately diagnose the presence of seizure activity 
in newborns. The most preferred method is continuous video 
EEG monitoring, allowing clinicians to determine if unusual 
features are seizures.6 Once a seizure is detected or simply sus-
pected, physicians may perform laboratory testing and other 
imaging modalities such as head ultrasonography and magnet-
ic resonance imaging (MRI) to confirm potential causes before 
treatment. If continuous video EEG monitoring is inacces-
sible, practitioners may turn to amplitude-integrated EEG 
(aEEG). Amplitude-integrated EEG, described as being able 
to “present time-compressed and filtered EEG data,” offers an 
alternative method for areas lacking the support that contin-
uous video EEG monitoring requires.5 However, aEEG does 
have a low sensitivity, which can lead to false negatives in the 
diagnosis, potentially allowing seizure activity to go undetect-
ed. Unfortunately, the entire process of traditional detection is 
costly, time-consuming, and does not guarantee full accuracy as 
annotations vary from professional to professional. Moreover, 
if a neonate is not diagnosed and treated in a timely fashion, 
the damage to the developing brain could cause “cognitive 
disorders, developmental delay, epilepsy, or cerebral palsy,” dis-
playing the crucial need for rapid diagnosis.7 A faster, reliable 
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diagnostic method would significantly benefit the medical 
specialty of neonatology.

A rising consideration in medicine is the use of Machine 
Learning (ML). Machine Learning allows for diagnosis 
beyond what the naked eye can detect and is anticipated to im-
prove many areas of medicine, including accuracy, prediction 
methods, and quality of patient care.8 At the moment, ML 
positions itself in a more supportive role in healthcare, easing 
the workload of physicians. In large facilities, machine learn-
ing techniques have been implemented in a multitude of ways, 
such as in record organization, medical imaging, and robot-as-
sisted surgeries.8 Countless studies have worked with EEG 
for seizure detection, leading to the possibility of earlier and 
more accurate seizure detection. However, implementing those 
computational methods on patients in real clinical settings will 
require further development as ML continues to evolve. Nev-
ertheless, once it does, patients with neurological conditions, 
such as epilepsy, will receive significantly improved outcomes.

Neural networks, a subset of ML, have been well-studied for 
their use in the medical field.9 Recently, with the increasing 
availability of public EEG data, many types of Neural Net-
works have been used, particularly to detect seizures. Recurrent 
Neural Networks (RNNs) deal with sequential, time-evolving 
data, which makes them well-suited for analyzing time-series 
data such as EEG signals, in which the order of information is 
essential. However, there is a lack of research on investigating 
RNNs’ effectiveness in neonatal seizure detection. Addition-
ally, this research solely relies on the key assumption that by 
treating annotations from human expert neurologists as the 
“ground truth”, we are accurately detecting seizures within all 
of these infants. Building on the strengths of RNNs, the model 
essentially functions as a universal classifier, designed to gen-
eralize across multiple patients rather than being specialized 
for a specific neonate. This approach allows the model to learn 
and understand patterns that apply to a wider range of EEG 
data, making it useful for diverse clinical settings. This univer-
sal classification approach ensures that the model is accurate 
across varying cases and not limited to a single patient’s data.

In this study, Recurrent Neural Networks (RNNs) were pro-
posed for their ability to process sequential data and capture 
temporal dependencies, such as those of EEG data, specifi-
cally Bidirectional Long Short-Term Memory Networks 
(Bi-LSTMs), a certain type of RNN. Although traditional 
RNNs function as a valuable model in ML, they frequently 
experience a certain challenge known as the vanishing gradient 
problem. This occurs during backpropagation when the gradi-
ent becomes increasingly small until it ultimately “vanishes.” 
Normal LSTMs overcome this issue by their additive update 
mechanism, with the use of gates. Specifically, the LSTM ar-
chitecture is constructed of the following parts: a cell, an input 
gate, a forget gate, and an output gate. The forget gate is what 
allows the model to reset its state.10 And the Bidirectional 
portion allows the LSTM to view data from both forward 
and backward time standpoints. Thus, this study intends to 
address the following research question: To what degree can 
a Bi-LSTM model accurately capture and interpret complex 
associations between neonatal EEG data and clinician-labeled 

annotations, and how accurately can it classify seizure events 
across diverse patient data?

�   Methods
Dataset:
The dataset chosen required high-quality data, corre-

sponding annotations, and a large diversity. This was found 
in a publicly available dataset labeled “A Dataset of Neonatal 
EEG Recordings with Seizure Annotations.”11 The dataset 
has EDF files available for multi-channel EEG recordings for 
seventy-nine term neonates, a MAT file for the visual inter-
pretations of the data, and a CSV file with the corresponding 
clinical information for each patient. The data was recorded 
from the Neonatal Intensive Care Unit at the Helsinki Uni-
versity Hospital, Finland, one of Europe’s largest healthcare 
providers. Out of the seventy-nine neonates, seizure consensus 
variability was visible with 39 infants labeled as seizure-prone 
and 22 labeled as seizure-free. The interquartile range for 
the EEG recordings was broad, from 64 to 96 minutes, with 
a median recording duration of 74 minutes, and the signals 
themselves were sampled at 256 Hz. The EEG recordings’ 
visual interpretations were annotated independently by three 
expert neurologists and stored in a MAT file for further use. 
The specialists defined seizure activity as visible on the EEG 
recordings when there was an “emergence of abnormal dis-
charges in bursts, termed ictal epileptiform discharges…
Escalate in frequency, evolving into rapid, continuous spikes 
and waves, and ultimately peak with numerous spikes accom-
panied by buried waves.”12 Annotations from the three experts, 
however, are also accessible in individual CSV files, catego-
rized as ‘A’, ‘B’, and ‘C’.

Data Preprocessing:
Several preprocessing steps were carried out to prepare data 

for input into the model, including bad signal removal, band-
pass filtering, segmentation in fixed-length epochs, feature 
selection, and standardization. The EEG recording dataset 
has 21 total channels, with the bipolar montage displayed in 
Figure 1; however, two of those channels are Electrocardio-
gram (ECG) and Respiratory Effort Channels. Unnecessary 
noise, spike waves, and artifacts caused by the extra channels 
may corrupt training, so to prevent contamination of the pure 
EEG data, removal of the ECG and Resp-Effort Channels 
was required. The raw continuous EEG data is then band-pass 
filtered from 0.1 to 15 Hz due to the range capturing the rel-
evant brainwave frequencies associated with neonatal seizures 
while minimizing noise. Afterward, the neonatal EEG data 
is segmented into epochs of one second each, corresponding 
with the annotations per patient.
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Statistical features regarding mean, variance, skewness, and 
kurtosis were extracted from the data (Figure 2). In addition to 
statistical features, time-domain features (TDF) and frequen-
cy-domain features (FDF) were also extracted. Within the 
TDF, zero crossing and peak-to-peak features were combined 
into a vector for each epoch. Zero Crossing calculates the 
number of times the EEG signal waves' amplitude values cross 
the zero-amplitude level.14 Peak-to-peak measures the differ-
ence between the maximum and minimum value of the EEG 
signals, showcasing the range or variation within the signals. 
Referring to the frequency domain, Power Spectral Density 
(PSD) was calculated. PSD measures the “signal’s power con-
tent versus frequency,” applied through Welch’s method.14 The 
following three feature vectors, statistical features, time-do-
main features, and frequency-domain features, were combined, 
leading to one large feature matrix, used as the input for the 
model. The data was then split at 70:30; 70% of the data was 
used for training (74,276 training samples), while the other 

30% was used for testing and validation (31,833 testing sam-
ples), as seen in the input shapes for the training and testing 
datasets. Lastly, the complete feature set data was standardized 
post-split for further accuracy. Standardization is where each 
data value is scaled to be centered around the mean with a 
standard deviation of one. This allows for increased model re-
liability by allowing it to learn necessary patterns in the data 
more effectively.

Since the EEG data was annotated by three separate neurol-
ogists, to improve results, the 3 CSV files were first imported 
as arrays and then combined into a matrix based on majority 
voting. Hence, a value is only added as ‘1’ if two or more an-
notators marked that epoch as seizure activity. Otherwise, the 
value is added as ‘0’ or normal brain activity. This allows for 
more consistency by considering consensus between multiple 
neurologists. Neonates that did not contain any positive ‘1’ val-
ues were then removed from the training set.

Model Architecture:
The model was built using the Keras Sequential Model, 

which is beneficial for efficiently stacking multiple layers.15 
The architecture of this model was adapted from a study by 
Zeedan et al., with significant adaptations to better suit the 
feature selection requirements of this research.16 Two Bidi-
rectional Long Short-Term Memory (Bi-LSTM) layers were 
included with 64 units each to capture the necessary tempo-
ral dependencies. A Bi-LSTM creates an additional layer of 
the reverse structure to produce more efficient information 
than traditional LSTM-based models or even basic RNNs.17 
The Bi-LSTM layers used activation functions of hyperbol-
ic tangent or TanH, which are commonly implemented for 
RNNs. Afterwards, two Dense layers were added with 32 and 
one unit(s) respectively for binary classification, each with 
Rectified Linear or ReLu activation functions. Several regular-
ization techniques were used to prevent overfitting, including 
Dropout, implemented at a rate of 0.1, allowing the network to 
be readjusted with an alternate group of neurons discarded for 
every training sample. Aside from Dropout, Batch Normaliza-
tion, and L2 Regularization were also implemented to prevent 
overfitting (Figure 3).

Figure 1: The bipolar montage represents the 21 EEG electrodes used in 
collecting the neonatal data used in the model. This montage follows the 
standard 10-20 system used globally for electrode placement, certifying 
comprehensive data collection. The recorded data was later processed and 
analyzed to train the Bi-LSTM efficiently for neonatal seizure detection.

Figure 3: The following visual represents the architecture that the model 
utilized. The first layer depicts a Bi-LSTM layer of 64 units, in which the 
neural network receives its input matrix of (74276, 1, 2489), applies its 
transformations, and releases its output to the next layer, which in this case is 
a Dropout Layer. This layer effectively releases 10% of its neurons to increase 
variability within the model’s training, before inputting it into another Bi-
LSTM layer, where this cycle repeats once more. The data then enters a Dense 
layer with 32 units for further data processing before reaching the respective 
Dropout Layer. In the final stretch, Batch Normalization increases the stability 
of the activation functions by normalizing the data, and the following Flatten 
Layer converts the multi-dimensional output into a single vector. Lastly, the 
data is input into a Dense Layer with one sole unit, allowing the model to 
binarily classify the output as seizure or non-seizure data.

Figure 2: The statistical features breakdown displays the mean, E(x), which 
refers to the average of all n data points collected, and the variance, Var(x), 
describing the average squared distance from the mean, or in simpler terms, 
the standard deviation of the data, squared. Skewness, S(x), indicates the 
measure of the asymmetry of the expected value (E) in the classic distribution 
of the data, and kurtosis, K(x), measures the "tailedness" or the sharpness of 
the peak in the data distribution, indicating how much of the variance in the 
data is due to extreme values.13
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During the model's training process, the loss and accuracy 
graphs (Figures 5 and 6) suggest strong overfitting. In Figure 
5, the validation loss is shown not to decrease significantly after 
running through the epochs, while the training loss continues 
to drop. Figure 6 supports this by showing oscillations in val-
idation accuracy while training accuracy is increasing steadily 
throughout the entire training process. This gap between train-
ing and testing performance suggests that the Bi-LSTM was 
becoming overly specialized to the training data, even with 
techniques set in place attempting to reduce overfitting, such 
as Dropout, Batch Normalization, and L2 regularization. Thus, 
this reduced its ability to generalize to new, unseen cases. These 
observations align with the model's habit of performing well 
on negative cases while struggling with positive cases.

The ADAM (Adaptive Moment Estimation) optimizer 
was used because of its fast convergence and is widely accept-
ed as the best choice for optimizers in similar problems. The 
ADAM optimizer is set with a learning rate of 0.01. Most 
often, ADAM is used with a learning rate of either 0.01 or 
0.001; however, a learning rate of 0.001 is better suited for 
image classification tasks rather than temporal features in our 
case.18 The model was then trained with 8 epochs using the 
Binary Cross-Entropy loss function, most widely accepted for 
binary classification tasks. To handle the clear class imbalance 
present in the data, with most epochs having an output of 0, 
or normal brain activity, in all the neonates present in the data, 
the Synthetic Minority Oversampling Technique (SMOTE) 
was implemented to create synthetic data points for the mi-
nority class. In this case, positive ‘1’ values indicating seizure 
activity were boosted through SMOTE to help balance the 
distribution of the data across the training sets, allowing the 
model to learn the patterns of both classes equally.

Evaluation Metrics:
The model’s overall performance was evaluated using a 

variety of metrics. A confusion matrix calculates the False 
Negative, True Negative, False Positive, and False Negative 
values, along with a traditional classification report with the 
performance measurement tools displayed for the F1-Score, 
Recall, Precision, and Accuracy. Lastly, the Area Under the 
Receiver Operating Characteristic Curve (AUC-ROC) was 
calculated to understand the correlation between the True 
Positive Rate and False Positive Rate.

�   Results and Discussion 
The resulting Bi-LSTM model was able to achieve accuracy 

rates of individual patients in a range from as low as 56% to 
as high as 93%. Overall, the model obtained an accuracy of 
83% across the testing dataset of all 79 individuals. Although 
it was able to accurately classify 91% of neonates with a lack of 
seizure activity as negative, it was only able to diagnose 53% of 
neonates having a seizure as positive. These results are shown 
in the Confusion Matrix presented in Figure 4. As indicated, 
the Bi-LSTM tended to perform better with negative cas-
es. The model had a Precision rate of 88%, a Recall of 90%, 
and an F1-score of 89% for predicting lack of seizure activity. 
However, the model only had a Precision rate of 58%, a Recall 
of 53%, and an F1-score of 55% for predicting the presence of 
seizure activity in neonates. This explains that the model has a 
high specificity but a low sensitivity.
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Figure 4: Each quarter of the confusion matrix displays a different outcome. 
The bottom left corner shows the false negative rate, or when the model 
misinterprets seizure activity as normal brain activity. The bottom right 
corner shows the true positive rate when the model accurately predicts seizure 
activity. The top left corner shows the true negative rate when the model 
accurately predicts normal brain activity. Lastly, the top right corner shows 
the false positive rate, or when the model misinterprets normal brain activity 
as seizure activity.

Figure 5: Displays the training vs. validation loss across multiple epochs. 
Training loss is depicted as consistently decreasing toward zero. Validation loss, 
on the other hand, plateaus around 0.42 to 0.44, indicating clear overfitting 
within the Bi-LSTM model.
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as observed, the distinction between these two classes isn’t as 
clear throughout all the infants, explaining why the accura-
cy varied considerably. Some cases had overlapping patterns, 
which could have led to the model missing certain seizures. 
To improve detection, further improvements to the model are 
needed, especially for less clear seizure cases.

Discussion:
The Bi-LSTM achieved an overall accuracy of 83%, demon-

strating the model’s ability to distinguish between normal and 
seizure epochs. The model's sensitivity refers to the number of 
correctly diagnosed True Positive events, or accurately diag-
nosed seizure events, over the total amount of seizure events 
in the EEG data. The specificity of this model refers to the 
number of correctly diagnosed True Negative events, or ac-
curately classified non-seizure events, over the total amount 
of regular events in the EEG data. One of the key strengths 
of this model was its high specificity. The model was able to 
accurately diagnose 90% of non-seizure epochs, demonstrating 
the model’s reliability in classifying normal cases without the 
presence of any seizure activity. However, the model did lack 
sensitivity. The Bi-LSTM model was only able to accurately 
diagnose 53% of seizure epochs, as reflected in the confusion 
matrix (Figure 4). This distinction indicates that, while the 
model performs well in detecting normal brain activity in neo-
natal patients, it may overlook more subtle seizure patterns, 
resulting in the lower sensitivity rates presented. The resulting 
false negatives are particularly concerning with infants, how-
ever, since missed seizures could result in delayed treatment 
options. This issue emphasizes the need for increased sensitiv-
ity, even if it comes at the cost of a lower specificity.

Lastly, both the Confusion Matrix (Figure 4) and ROC 
curve (Figure 7) highlight the model’s ability to reduce False 
Negatives while emphasizing the need for clearer detection of 
True Positive events. The Area Under the Curve (AUC) score 
is 0.808, which, although it is a significant jump from random 
prediction at 0.5 AUC, still requires large model improvement 
necessary in determining differences between seizure versus 
non-seizure EEG data.

Seizure vs. Non-Seizure Epochs:
By comparing EEG data examples from both groups, we can 

better see how the model decides to make its choices. Figures 
7 and 8 display a side-by-side comparison of correctly classi-
fied seizure and non-seizure events, revealing the brain wave 
features that the Bi-LSTM was able to accurately understand.

In Figure 7, the non-seizure epochs display consistent brain 
wave patterns with limited spikes or sudden shifts. On the 
other hand, Figure 8, which shows seizure epochs, has cha-
otic activity, sharp peaks, and large amplitude changes that 
aren’t seen often in non-seizure states. These differences like-
ly influenced how the model made its predictions. However, 
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Figure 6: Displays the training vs. validation accuracy across multiple 
epochs. Training loss is depicted as consistently increasing toward one, while 
validation accuracy fluctuates near 0.81, indicating the model is becoming 
overly specialized to the training data itself.

Figure 8: Illustrates the average EEG epoch across nineteen channels that 
were identified as normal brain activity for a single patient. Brain waves are 
characterized by minimal spikes or abrupt shifts, indicating the absence of 
seizures within the segment of data.

Figure 9 : Showcases the average EEG epoch across nineteen channels that 
were identified as seizure activity for a single patient. Visually depicts key 
features that distinguish the data from a normal EEG segment to both the 
Bi-LSTM model and neurologists.

Figure 7: Represents the correlation between the false positive and 
true positive rate of the Bi-LSTM model through the receiver operating 
characteristic (ROC) curve.
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Limitations:
These complications can be caused by the various limitations 

present in the data. First of all, even the medical profession-
als who annotated the dataset struggled with determining a 
positive case. The three annotators all had varying annotations 
with each patient within the dataset. Some would consider one 
epoch a sign of key seizure activity, while others would label the 
same epoch as a negative case. Attempts to combat this issue 
were made by combining the three neurologists’ annotations 
and using the majority rule to determine the information used 
in the model. However, this did not guarantee that the model 
was tested on true information, as although the majority rule 
relies upon consensus, one cannot state that the consensus was 
100% valid. The accuracy of the model depends on the accuracy 
of the expert’s annotations, which will always remain uncertain. 
Some results that were analyzed as False Positives could in-
deed mean the patient has symptoms of seizure activity, and 
the experts had just overlooked it in the analysis. Nonetheless, 
there is no certain way to fully know whether these cases were 
truly accurate or not. Thus, this model does not predict the 
onset of neonatal seizures but showcases how close artificial in-
telligence can come to predicting the methods behind human 
neurologists' annotation of neonatal seizures through the visual 
analysis of EEG data. Each percentage of accuracy indicates 
how similar the model came to predicting seizures in the way 
human experts can.

Second, visual comparisons of the classified positive and 
negative epochs (Figures 7 and 8) reveal key characteristics 
that may have guided the model's predictions. Commonly, 
non-seizure epochs exhibited regular-appearing EEG activity, 
with no apparent erratic spikes and fluctuations seen in the 
seizure epochs.

However, the overlap between normal and seizure-like ac-
tivity in certain patient cases very likely contributed to the 
Bi-LSTM’s lower sensitivity. This is shown in the performance 
of the model, which varies significantly across individuals, with 
accuracy having an overall range of 56% to 93% across all 79 
patients. Differences in EEG signal quality could have also 
caused this variation, although the distinctiveness of seizure 
patterns across patients in the lower range of accuracy certain-
ly impacted the model’s apparent performance. Neonates with 
clearer seizure patterns were more easily classified, while those 
with larger, ambiguous activity led to a lower sensitivity of the 
model.

Third, analysis of the training process revealed strong signs 
of overfitting, as indicated by the loss graph in Figure 5. The 
validation loss oscillated frequently, never truly declining the 
way the training loss was able to. This could have been averted 
by running a larger number of epochs; however, the size of the 
data led to numerous epochs becoming computationally pro-
hibitive. This caused the model to be overly specialized to the 
training data and struggle with unseen cases in the testing data.

Future Work:
Significant improvements are required to improve the mod-

el’s sensitivity to neonatal seizure data. To enhance the model’s 
performance and increase its clinical applicability, several 

key areas for future study can be explored. First of all, using 
advanced feature extraction techniques may provide more de-
tailed signals for seizure detection. Additionally, optimizing 
the model architecture, possibly by using a more complex hy-
brid-based (Conv-LSTM) model, may provide more accurate 
results. Lastly, during preprocessing, it may be beneficial to 
analyze patient data separately and feed it through the mod-
el individually, rather than combining multiple patients’ data 
as done in this study. These improvements could allow for 
increased model accuracy and more personalized neonatal sei-
zure classification, resulting in better clinical outcomes.

�   Conclusion 
A Bidirectional Long Short-Term Memory (Bi-LSTM) 

model was utilized in this study to analyze its usefulness in 
predicting neonatal seizures relative to human experts. The 
Bi-LSTM model was selected because of its effectiveness in 
working with time series data, capturing both past and future 
information simultaneously, without running into challenges 
often seen with basic Recurrent Neural Networks. Three fea-
ture sets were extracted from the Helsinki dataset, involving 
EEG data from 79 term infants, including statistical features, 
time-domain features, and frequency-domain features. The 
corresponding seizure annotations from three expert neurol-
ogists were combined based on majority rule and fed into the 
model. The Bi-LSTM model achieved an overall accuracy as a 
universal classifier for all 79 neonates of 83%.

Although the model was unable to predict the majori-
ty of seizure-activity instances, this research still represents a 
valuable step toward improving neonatal care worldwide. En-
hancing early seizure detection, even with its valid limitations, 
could facilitate earlier interventions in many critical cases, con-
sidering the model does indeed have a higher True Positive 
rate than a False Positive Rate. Even now, it is difficult for less-
equipped healthcare facilities to attain the proper assistance 
and tools required for suitable infant care, having to travel large 
distances to larger hospitals during critical times. With the use 
of AI, these hospitals may have an opportunity for rapid de-
tection before they can receive appropriate care from medical 
professionals. That, in turn, has the potential to reduce the se-
verity and long-term neurological effects commonly associated 
with neonatal seizures. Further improvements in this model 
could enhance its sensitivity, offering even greater benefits to 
the developmental outcomes and quality of life of the affected 
newborns.

Thus, this study contributes to the ever-growing body of 
knowledge on neonatal care and seizure detection by lever-
aging advanced recurrent neural network techniques. These 
findings demonstrate the potential to enhance the timeliness 
and accuracy of neonatal seizure detection. With further re-
finement and validation, this research approach holds promise 
for future clinical applications, potentially improving outcomes 
for newborns at risk of seizures. Combining artificial intelli-
gence's rapid computational power with clinicians' empathy 
and observational expertise projects a revolution in the future 
of neonatal patient care.
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