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ABSTRACT: This study evaluates ST-CGAN and RASM for shadow removal using the ISTD and ISTD+ datasets, 
comparing their accuracy, efficiency, and generalization. Results show ST-CGAN improves with training, reducing RMSE from 
16.39 at epoch 1 to 9.64 at epoch 500, but gains plateau after 100 epochs. Training on ISTD+ lowers RMSE further, yet RASM 
significantly outperforms ST-CGAN, achieving an RMSE of 2.53 on ISTD+ compared to ST-CGAN’s projected 5.02 at epoch 
10,000. In addition to these two models, recent transformer-based methods such as ShadowFormer and HomoFormer have 
demonstrated state-of-the-art results on ISTD+ and SRD benchmarks. These findings highlight that RASM, which leverages a 
regional attention mechanism within a transformer framework, achieves superior accuracy and computational efficiency compared 
to earlier CNN-based approaches and other state-of-the-art transformer models, establishing it as a practical solution in the field 
of shadow removal. 
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�   Introduction
“Where there is light, there are shadows.”:
Shadows occur when light is obstructed by objects–a natural 

and unavoidable phenomenon in human life that only rarely 
obstructs vision with any memorable significance. In robotics 
applications, however, shadows can cause frequent recognition 
errors in tasks such as object detection and tracking. These re-
curring failures, observed for example in competitive robotics 
systems, highlight the practical importance of effective shad-
ow removal as a preprocessing step. Because robotic platforms 
typically operate under constrained computational resources, 
this motivates the exploration of lightweight shadow removal 
strategies that balance accuracy with efficiency.1

In the realm of computer vision, shadows present significant 
challenges for object detection, tracking, and segmentation. 
In finer image modification work, shadows impact light res-
olution—shadowed regions typically have lower luminance 
values, leading to altered color intensities and reduced accuracy 
in shadowed areas. Consequently, effective shadow removal is 
an essential prerequisite for nearly all computer vision applica-
tions and has been a subject of scholarly attention for decades.2

Artificial Intelligence models are poised to perform the 
majority of shadow removal in Image processing. While it is 
well known that AI models improve over time by incorpo-
rating new data and enhancing their predictive accuracy, the 
effectiveness of AI at shadow removal is constrained by several 
technical bottlenecks, most notably computational limitations 
within real-world constraints.3 e.g., Autonomous vehicles will 
require exceptionally efficient image processing models to 
make sense of fast-moving objects in heterogeneous scenarios 
quickly. As of now, Deep Learning has achieved outstanding 
success in audio and speech processing, natural language pro-
cessing (NLP), and numerical data analysis.4 In recent years, 
deep learning-based shadow removal methods have demon-

strated superior performance, primarily due to the availability 
of extensive training data.5 With the rise in GPU capabilities, 
deep neural networks have become a central focus of modern 
shadow removal research. These models offer higher accuracy 
and efficiency compared to physical-model-based approaches. 
However, they also introduce new challenges, primarily the re-
liance on large and diverse datasets. Recent surveys2,6 provide 
a comprehensive overview of shadow removal research from 
2017 to 2023, illustrating a clear progression from early CNN-
based methods toward transformer-based architectures4,7 and 
diffusion-based approaches.7,8 While these models achieve 
state-of-the-art results on widely used benchmarks such as 
ISTD+ and SRD, they generally require more computation-
al resources than CNN or lightweight designs, making them 
less suitable for deployment in resource-constrained environ-
ments. This underscores the importance of evaluating new 
lightweight frameworks such as RASM not only against ear-
lier CNN approaches but also within the broader trajectory of 
shadow removal research.

Although transformer- and diffusion-based architectures 
have recently advanced the field, embedded systems, mo-
bile devices, and autonomous platforms still require methods 
that balance accuracy with efficiency. Within this context, 
two representative approaches illustrate distinct strategies. 
The first is the Stacked Conditional Generative Adversari-
al Network (ST-CGAN), an early CNN-based model that 
stacks two CGANs—one for shadow detection and one for 
shadow removal—thereby providing an end-to-end pipeline 
and demonstrating the benefits of multitask design under 
constrained computational budgets. By contrast, the Regional 
Attention Shadow Removal Model (RASM) reflects a newer, 
lightweight, region-aware paradigm: by enabling adaptive in-
teraction between shadowed and non-shadowed areas, RASM 
leverages contextual correlation to restore shadowed content 
with improved accuracy while maintaining efficiency.
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While both models aim to improve shadow removal 
under limited resources, they embody different design philos-
ophies—ST-CGAN as a canonical CNN-based baseline and 
RASM as a lightweight region-aware framework. This study 
compares these two approaches to analyze their respective 
strengths, limitations, and trade-offs in low-compute scenari-
os. The analysis begins with a brief review of shadow removal 
challenges, proceeds with a methodological comparison and 
experimental evaluation, and concludes with observations on 
practical implications.

Shadow Removal: A Scholarly Review:
Prior work has extensively examined shadow removal as a 

means to improve downstream computer vision tasks.3,9 Tra-
ditional methods often relied on physical illumination and 
reflection models,3 treating each pixel individually according to 
its lighting conditions. While these approaches can effective-
ly restore images, they tend to be time-consuming and often 
require manual user interactions, limiting their practicality 
for large-scale or real-time applications. For example, break-
throughs in color detection for light restoration require a level 
of image comprehension that would be too costly to program 
into models running on home devices.10 Patch-based shad-
ow removal strategies11 align more closely with deep learning 
models but would still be too slow for time-critical applica-
tions such as autonomous vehicles. In addition, filtering-based 
strategies like bilateral decomposition12 were employed to 
separate base and detail layers for shadow removal. Arbel and 
Hel-Or13 argued that shadow removal systems are inherently 
skewed towards inefficiency because “Shadows in images are 
typically affected by several phenomena in the scene, includ-
ing physical phenomena such as lighting conditions, type and 
behavior of shadowed surfaces, occluding objects, etc.,” sug-
gesting profound detail orientation is necessary for complete 
artifact removal.

With the rise of deep learning, researchers began to ad-
dress these inefficiencies. AI-assisted shadow removal has 
progressed beyond texture recognition and 3D modeling.14,15 
For instance, ST-CGAN9 provided an end-to-end solution 
that simultaneously handled shadow detection and removal 
by stacking two conditional GANs, enhancing performance 
through mutual reinforcement of both tasks. Other studies em-
phasized context modeling: recent work highlighted concerns 
about artifact distortion at the shadow border, and proposed 
programs to model the correlation between shadowed and 
non-shadowed regions.4,5 To further improve efficiency, sev-
eral works16 focused on increasing the number of training 
iterations and reducing computational demand. Wang, Li, 
and Yang9 advanced this line of research by introducing a bi-
jective mapping network, coupling the procedures of shadow 
removal and shadow generation in a unified parameter-shared 
framework. This approach effectively recovered the underly-
ing background contents during the forward shadow removal 
process. However, their method still required additional pro-
gramming layers to manage color-rich images, suggesting that 
dataset limitations remained unresolved.

Two primary strategies have been developed to overcome 
dataset limitations: Dataset Enhancement and Shadow Sim-
ulation Models. Dataset limitations. Dataset Enhancement 
involves creating shadow masks (binary images indicating 
shadowed and shadow-free areas) and shadow-free patches 
(manually edited versions of original images with shadows re-
moved) to expand the dataset. While this method improves 
model performance, it requires significant human effort, par-
ticularly during the shadow removal and masking processes. 
Shadow Simulation Models artificially generate shadows 
on existing images to augment datasets. Though effective 
in increasing data volume, the quality of simulated shadows 
heavily depends on the diversity of the original dataset. A lack 
of variation in shadow patterns limits the effectiveness of this 
approach.

More recently, surveys2, 17 have shown that shadow removal 
research from 2017 to 2023 has progressed from early CNN-
based methods toward transformer-based architectures4,6 and 
diffusion-based approaches¹⁶. These newer models achieve 
state-of-the-art performance on benchmarks such as ISTD+ 
and SRD, and their global context modeling and generative 
priors provide clear advantages in handling complex shadow 
patterns and boundary artifacts. While such models demon-
strate clear advantages, this study restricts its scope—due 
to experimental constraints and the focus on robotics envi-
ronments under limited computational resources—to two 
representative efficiency-oriented methods: ST-CGAN and 
RASM.

�   Methodology
This study evaluates the effectiveness of two shadow remov-

al models: the Stacked-Conditional Generative Adversarial 
Network (ST-CGAN) and the Regional Attention Shadow 
Removal Model (RASM). The shadow removal process is di-
vided into two main stages: (1) identifying shadowed regions 
and (2) reconstructing and refining these regions using dif-
ferent computational approaches. Each method is assessed 
independently to compare its effectiveness in deshadowing.

ST-CGAN is implemented using two separate Condition-
al Generative Adversarial Networks (CGANs) for the two 
stages of shadow removal. Python was chosen as the primary 
programming language due to its extensive machine learning 
libraries and the prevalence of prior implementations in Py-
thon.

As one of the transformers, the shadow removal model, 
using the Retinex-based model, ShadowFormer, introduced 
multiple channel-spatial attention mechanisms. Using the 
Shadow-Interaction Module along with the Shadow-Inter-
action Attention, ShadowFormer could build correlations 
between the shadowed and non-shadowed regions and use in-
formation from the shadow-free portion for the restoration of 
the image. ShadowFormer used the idea of a window, in which 
the transformer would only apply to a specific area (a channel), 
to compensate for the large calculation complexity and cost.4

As another development of implementing transformer use 
in the task of shadow removal, HomoFormer addressed the 
issue of the non-uniformity of the shadow in the given image. 
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Non-uniformity imposes a constraint on weight-sharing mod-
els, where they struggle to seek a compromise among regions 
of various degenerated degrees. HomoFormer implements a 
random shuffle mechanism in its encoding process to homog-
enize the degree of shadow degradation, while a de-shuffle in 
the decoder layer restores the image.17

RASM is a lightweight shadow removal model that lever-
ages non-shadow areas to assist in restoring shadowed regions. 
By implementing a regional attention module, RASM has a 
regional attention module to continuously learning the cor-
relation between adjacent shadow and non-shadow regions. 
Differentiating from ShadowFormer and HomoFormer, 
RASM took a step back and aggregated information from its 
adjacent non-shadowed regions in its regional attention mod-
ule. This approach strikes a balance between model complexity 
and performance, optimizing both accuracy and computation-
al efficiency.

To evaluate the performance of these models, we used the 
ISTD+ dataset throughout the training and testing phases. 
Model effectiveness was measured using Root-Mean-Square 
Deviation (RMSE) and PSNR, MAE, and SSIM. Addition-
ally, we varied the number of training epochs to analyze the 
relationship between task complexity and image reconstruc-
tion quality.

ISTD Dataset:
The ISTD dataset is a widely used benchmark for shadow 

removal tasks, comprising 1,870 image triplets across 135 di-
verse scenes that feature various shadow shapes and lighting 
conditions. The dataset is divided into 1,330 triplets for train-
ing and 540 triplets for testing, facilitating model evaluation 
and generalization.

Each triplet in the dataset comprises the following compo-
nents:

1. A shadowed image – the original input image containing 
natural shadows.

2. A shadow mask – a binary mask delineating the shadowed 
regions.

3. A shadow-free image – an image where shadows have 
been manually removed following the shadow mask.

The shadow removal in ISTD is performed manually, ensur-
ing precise adherence to the shadow mask. This high-quality 
annotation enables Convolutional Neural Networks (CNNs) 
and Conditional Generative Adversarial Networks (CGANs) 
to effectively learn shadow localization from the shadow mask, 
while also identifying differences in luminance, texture, and 
resolution between shadowed and shadow-free images. By le-
veraging these structured triplets, the models can be trained to 
accurately detect and reconstruct shadowed areas, improving 
overall deshadowing performance.

Assessing the Accuracy of Models:
We use the root mean square error (RMSE) as the metric 

to quantify the discrepancy between the ground-truth shad-
ow-free image and the recovered image, with lower values 
indicating higher accuracy or lower distortion.

The RMSE is determined by the equation:18

We consider two input sets of images, I1 and I2, where each 
image consists of n pixels. For each corresponding pixel in the 
two images, we compute the difference between their RGB 
values, take the average of these differences, and then compute 
the square root of this average to determine the overall error. 
This results in the Root Mean Squared Error (RMSE), which 
quantifies the difference between the two images. The detailed 
RMSE calculation is provided in the Appendix.

Methodologies for Shadow Removal: ST-CGAN, Shadow-
Former, HomoFormer, and RASM:

Shadow Removal Using ST-CGAN:
Shadow removal from a single image involves two funda-

mental tasks: shadow detection and shadow removal. The 
Stacked Conditional Generative Adversarial Network (ST-
CGAN) is an architecture designed to perform both tasks 
jointly, enabling end-to-end learning for improved accuracy 
and efficiency.

The ST-CGAN architecture consists of two stacked Condi-
tional Generative Adversarial Networks (CGANs):

1. Shadow Detection Network – Identifies shadowed re-
gions and generates a shadow mask.

2. Shadow Removal Network – Uses the shadow mask along 
with the original image to reconstruct a shadow-free version.

Each CGAN comprises a generator and a discriminator, 
working in tandem to enhance the realism and accuracy of the 
shadow removal process. The generator aims to produce an 
image where shadows are effectively removed, while the dis-
criminator evaluates the authenticity of the generated output, 
pushing the model toward higher-quality reconstructions.

Shadow Removal Using Shadowformer:
Shadowformer introduces a multiple-scale channel-spatial 

attention mechanism within a Transformer framework. This 
Figure 1: Example of a triplet: Shadow-Free Image, Shadow Mask, and 
Original Image.9

Figure 3: Architecture of the Proposed ST-CGAN: Stacked CGANs for 
Shadow Detection and Removal.9

Figure 2: Root Mean Square Error (RMSE) Equation.18

	 ijhighschoolresearch.org



	 66	

plexity in calculation. During the down and then up-sampling 
layers, progressive reduction in the spatial resolution while in-
creasing feature richness is applied with downsampling, while 
the upsampling strategy is used to restore the spatial resolution. 
This process is able to preserve important details lost during 
the traditional encoder-decoder architecture. The features 
would lastly pass through an output projection layer to gener-
ate the image.

Shadow Removal Using RASM:
The Regional Attention Shadow Removal Model (RASM) 

is a lightweight yet effective shadow removal approach that 
utilizes non-shadow regions to enhance the reconstruction of 
shadowed areas. By incorporating regional attention mecha-
nisms, RASM enables context-aware interactions between 
shadowed and non-shadowed areas, facilitating a more accu-
rate and natural restoration process.

This model is designed to strike an optimal balance between 
computational efficiency and accuracy, ensuring effective shad-
ow removal while maintaining manageable model complexity. 
Specifically, the regional attention module could focus on a 
specific area of the matrix and therefore avoid being excessive 
yet non-informative. In doing so, RASM achieved only 1/4 of 
GFLOPs. Through its regionally contextual approach, RASM 
enhances the overall quality of shadow-free images while re-
ducing computational overhead.

Here, we present a brief overview of the RASM structure. 
On the left side (a) was the process of model and shadow con-
traction area, which employs the Channel Attention Module 
(b). After allowing the global information to interact, Channel 
Attention enters and eventually concludes in a spatial informa-
tion interaction.

Experiment 
For computational resources, we employed Google Colab as 

the primary cloud-based virtual machine. The training dura-
tion per epoch ranged from 3,087 to 3,850 seconds on a CPU 
and approximately 90.79 to 95.69 seconds on a GPU. How-
ever, GPU availability on Colab was limited, restricting the 

design addressed the challenge of other transformer models 
of integrating global semantics from deep feature layers with 
local details from shallow feature layers.

ShadowFormer started with the Retinex-based shadow 
model that handles shadow degradation to allow models to 
draw information from non-shadow regions to restore the 
shadow region. The restoration process is done through an 
encoder-decoder under a single-stage transformer framework 
via channel attention to efficiently multiple-stack the hierar-
chical information. Then, the correlation between the shadow 
vs non-shadow region is exploited by the Shadow-Interaction 
Module with Shadow-Interaction Attention. This allowed 
ShadowFormer to address the challenge of colour inconsis-
tency and boundary trace in the restored shadow-free images.

Here, we present a quick overview of the architecture of 
ShadowFormer. The process begins with 2 inputs, the shadow 
image along with the shadow mask, which is linearly project-
ed, which maps the inputs into a latent feature space. In the 
encoder stage, features are processed using a channel attention 
model and a standard transformer structure. Then, the features 
enter the decoder stage, which mirrors the encoder by using 
channel attention modules to reconstruct the spatial details. A 
linear projection layer transformation is connected to feature it 
back into image space.

Shadow Removal Using HomoFormer:
The HomoFormer is an advanced shadow removal mod-

el that leverages a homography-inspired Transformer 
architecture to model the relationship between shadow and 
non-shadow regions. A foundation based on other transform-
er architectures that would focus on the non-uniform issue of 
shadow and as well as the classic self-attention method. The 
image shuffle strategy involves upsampling and downsampling 
to exchange information between channels and space, while 
preventing the spatial arrangements of pixels. At the end, with 
an implementation of self-attention to concentrate on region-
al attention, HomoFormer decreased computing complexity 
compared to other models.

This model compromises a conflict of previous transformer 
models: previous models suffer from either a quadratic in-
crease in complexity as the resolution of the image increases, 
or the weight sharing when dealing with non-uniform shadow 
degradation. HomoFormer implemented the strategy to ho-
mogenize the non-uniform distribution.

Here, we present a brief overview of the HomoFormer struc-
ture. The process begins with the input project stage, where the 
images with shadow and the shadow masks are mapped into a 
feature space, which is the core parts: the HomoBlocks inte-
grates Layer Normalization, local self-attention with random 
shuffle, and SMLP (standard transformer used). The regional 
attention is also implemented in this section to minimize com-
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Figure 4: Architecture of the Proposed ShadowFormer.4

Figure 6: Demonstration of RASM.19

Figure 5: Architecture of the Proposed HomoFormer.17
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further to 500 epochs yielded only marginal improvements. 
While the RMSE decreased slightly from 10.09 to 9.64, the 
visual differences were negligible. This suggests that beyond a 
certain point, additional training yields diminishing returns, as 
the model reaches a plateau in performance where further re-
finement offers minimal perceptible enhancement in shadow 
removal quality.

The experimental results lead to three key observations:
• The computational environment does not significantly af-

fect model performance, as both Colab and a personal laptop 
produced comparable outputs and RMSE values.

• Training duration has a substantial impact on model effec-
tiveness, particularly in the early stages, as demonstrated by the 
significant improvements between 1 and 100 epochs.

• Beyond 100 epochs, further training yields only incremen-
tal gains, with minimal reductions in RMSE and imperceptible 
improvements in visual quality.

number of training epochs to well below 500. To supplement 
this, we conducted additional tests on a consumer-grade laptop 
equipped with an NVIDIA GeForce GTX 1650 GPU with 
16GB of memory. The GPU performance on this system was 
comparable to that of Colab, making it a reasonable bench-
mark for evaluating model feasibility on consumer hardware.

To systematically evaluate the performance of the shadow 
removal models, we conducted a series of experiments under 
varying computational environments and training durations. 
The experiments were performed using both Google Colab 
and a personal computing device, with training durations of 
1, 100, and 500 epochs. The effectiveness of the models was 
assessed using both qualitative visual analysis and quantitative 
evaluation via Root-Mean-Square Deviation (RMSE).

To investigate the potential influence of computational en-
vironments on model performance, we trained the model for 
100 epochs using both Google Colab and a personal laptop. 
Figure 4 and Figure 5 illustrate six representative examples 
from these experiments, where each row corresponds to a 
different test sample and each column represents the origi-
nal shadowed image, the ground truth shadow-free image, the 
shadow-free image generated by the model, the ground truth 
shadow mask, and the shadow mask produced by the model. 
A qualitative analysis of the results revealed no significant dif-
ferences between the outputs generated on the two platforms. 
Samples that were successfully processed on one platform were 
also successfully processed on the other, while failure cases re-
mained consistent across both environments. This observation 
was further confirmed by the RMSE values, which indicated 
that the personal laptop achieved performance comparable to 
the Colab-based model. These findings suggest that the choice 
of computational environment does not substantially impact 
the model’s performance, validating the robustness of the im-
plementation across different hardware configurations.

�   Results and Discussion 
Experiment Results:
To assess the impact of training duration on shadow detec-

tion and removal, we compared the results obtained after 1,100 
and 500 epochs, all conducted on a personal laptop (Figures 
6 and 7). After a single epoch of training, the model exhib-
ited poor generalization, failing to accurately detect shadow 
boundaries or reconstruct shadow-free images. The generated 
shadow masks were imprecise, and the overall visual quality 
of the outputs was suboptimal. This was reflected in a high 
RMSE of 16.39, indicating a significant deviation from the 
ground truth. These results highlight the necessity of extended 
training for the model to learn meaningful representations of 
shadow regions and their corresponding shadow-free recon-
structions.

After 100 epochs, the model demonstrated substantial 
improvements in both shadow detection and removal. The 
generated shadow-free images closely resembled the ground 
truth, with only minor imperfections in certain cases. This was 
quantitatively supported by a significant reduction in RMSE 
to 10.09, indicating enhanced accuracy and improved recon-
struction quality. However, increasing the training duration 

DOI: 10.36838/v8i3.63

Figure 7: Completed with Colab, 100 epochs. Here, we demonstrate 
3 examples (corresponding to 3 rows) of the output of our program. Each 
column, from left to right, corresponds to: the shadowed picture from the 
dataset, the shadow-free image from the dataset, the shadow-free image the 
code generated, the shadow mask the dataset contains, and the shadow mask 
the code generated.

Figure 8: Completed on personal laptop, 100 epochs. As a result, between 
a personal laptop (Figure 8) vs Colab (Figure 7), we could eyeball and 
conclude that there is almost no difference. Therefore, we conclude that the 
computational environment does not significantly affect model performance.
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Effect of Training Epochs on RMSE with ST-CGAN:

Table 1 illustrates the Root Mean Squared Error (RMSE) 
values obtained at different training epochs for the ISTD data-
set. RMSE serves as a quantitative measure of deshadowing 
effectiveness, where lower values indicate better performance. 
The results demonstrate a clear downward trend in RMSE 
as the number of training epochs increases, suggesting that 
extended training enhances the model's ability to remove shad-
ows.

At epoch 1, the RMSE is 16.39, indicating a relatively high 
error in shadow removal. As training progresses to epoch 10, 
the RMSE decreases to 12.83, reflecting an improvement in 
the model’s capacity to reconstruct shadow-free images. A 
more significant reduction is observed at epoch 100, where 
the RMSE drops to 10.09, indicating substantial progress in 
learning. However, after epoch 100, the reduction in RMSE 
becomes less pronounced. At epoch 300, the RMSE is 9.88, 
and at epoch 500, it further declines slightly to 9.64. This di-
minishing improvement suggests that the model approaches 

its performance plateau, where additional training yields only 
marginal enhancements.

For comparison, the ST-CGAN paper9 reports an RMSE 
of 7.47 at epoch 10,000, which is significantly lower than the 
RMSE values achieved in our experiments. This discrepancy 
suggests that extended training beyond 500 epochs may further 
enhance the model’s performance.

Effect of Training Epochs on RMSE between Models:

To ensure a fair comparison between the ST-CGAN and 
RASM models, we used a consistent dataset for evaluation. 
The ST-CGAN model was originally trained and tested on 
the ISTD dataset. In contrast, the RASM model was evalu-
ated using the ISTD+ dataset, a refined version of ISTD that 
addresses illumination inconsistencies between shadowed and 
shadow-free images. To facilitate direct comparison, we recal-
culated the RMSE values for the ST-CGAN model using the 
ISTD+ dataset at training epochs 1, 10, 100, 300, and 500. The 
recalculated RMSE values for ST-CGAN are derived from 
our experimental results, while the RMSE values for RASM 
are taken from “Regional Attention for Shadow Removal.”19

According to Table 2, the comparison between the ST-
CGAN model trained on ISTD vs. ISTD+ reveals notable 
differences in shadow removal effectiveness. At the initial 
training stage (epoch 1), the RMSE for ISTD+ is 14.06, slight-
ly outperforming ISTD’s 16.39, yielding an RMSE ratio of 
0.858. A more pronounced improvement is observed at epoch 
10, where the RMSE for ISTD+ decreases to 9.14, compared 
to 12.83 for ISTD, resulting in an RMSE ratio of 0.712. How-
ever, beyond epoch 10, the reduction in RMSE for ISTD+ 
becomes less significant in comparison to ISTD. By epoch 100, 
the ratio stabilizes at 0.691, then further decreases to 0.675 at 
epoch 300, and 0.672 at epoch 500. This trend suggests that 
the RMSE ratio is approaching a steady state. Assuming this 
ratio remains consistent up to epoch 10,000, we estimate the 
RMSE for ISTD+ at epoch 10,000 to be approximately 5.02.

According to the RASM paper,19 the RMSE of the RASM 
model trained on ISTD+ is reported as 2.53, which is signifi-
cantly lower than the projected RMSE of ST-CGAN from our 
experiments. This substantial difference indicates that RASM 
achieves superior performance in shadow removal compared 
to ST-CGAN, particularly in terms of quantitative accuracy. 
The results suggest that the regional attention mechanism 
employed in RASM is more effective in leveraging contextual 
information for shadow reconstruction, leading to a more pre-
cise removal process.
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Figure 9: Completed on personal laptop, 1 epoch. Compared with the 
personal laptop after 100 epochs (Figure 8), the output after 100 epochs on a 
personal laptop (Figure 8) shows a significantly higher quality.

Figure 10: Completed on personal laptop, 500 epochs. At this point, it is 
difficult to eyeball any difference between 100 epochs (Figure 8) and 500 
epochs (Figure 10), which means the improvements are gradually decreasing 
during this process; however, there could still be a non-obvious improvement.

Table 1: RMSE was tested with different training epochs using ST-CGAN.

Table 2: RMSE compared with different training epochs between ST-
CGAN and RMSE.
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Comparison with Advanced Transformer Models:

Beyond CNN-based methods and lightweight designs such 
as RASM, recent studies have introduced transformer and 
diffusion architectures that achieve state-of-the-art results on 
benchmark datasets. For example, ShadowFormer reports an 
RMSE of 2.78, PSNR of 35.46 dB, and SSIM of 0.971 on the 
ISTD+ dataset.4 Similarly, HomoFormer achieves an RMSE 
of 2.64, PSNR of 35.35 dB, and SSIM of 0.975,7 reflecting its 
ability to model non-uniform degradation through homoge-
nized attention blocks.

These figures illustrate that transformer-based models 
currently surpass CNN approaches in absolute accuracy, par-
ticularly in handling complex shadow boundaries and color 
inconsistencies. However, they are also characterized by signifi-
cantly higher computational demands, often requiring multiple 
GPUs or extended training times.

RASM has a small number of parameters and low FLOPs, 
utilizing a negligible amount of computational resources while 
achieving superior performance, demonstrating that RASM 
effectively balances model complexity and model performance.

In this study, the experimental comparison is limited to ST-
CGAN and RASM due to hardware constraints typical of 
robotics environments, where platforms must balance accuracy 
against strict efficiency requirements. Nevertheless, as robotic 
systems increasingly adopt more powerful GPUs, the incorpo-
ration of advanced architectures may become both feasible and 
advantageous, enabling higher-fidelity perception in dynamic 
real-world tasks.

�   Conclusion 
This study compared ST-CGAN and RASM for shadow 

removal, evaluating their effectiveness, computational efficien-
cy, and accuracy using the ISTD and ISTD+ datasets. Our 
experiments demonstrated that ST-CGAN benefits from 

extended training, with RMSE decreasing from 16.39 at ep-
och 1 to 9.64 at epoch 500 on ISTD. However, beyond 100 
epochs, improvements became marginal, indicating a perfor-
mance plateau. Additionally, results confirmed that the choice 
of computational environment (Google Colab vs. personal lap-
top) had no significant impact on model performance.

Training ST-CGAN on ISTD+ consistently resulted in 
lower RMSE values, highlighting the role of dataset refine-
ment in improving shadow removal accuracy. However, RASM 
significantly outperformed ST-CGAN, achieving an RMSE 
of 2.53 on ISTD+, compared to ST-CGAN’s projected 5.02 
at epoch 10,000. This suggests that RASM’s regional attention 
mechanism more effectively restores shadow-free images while 
maintaining computational efficiency.

Beyond these two models, transformer-based methods 
such as ShadowFormer, HomoFormer have recently set new 
benchmarks, with RMSE values under 2.8 and SSIM above 
0.97. These results indicate that advanced architectures offer 
superior absolute accuracy, particularly for complex shadow 
boundaries. However, they remain computationally demand-
ing, making them less feasible for current low-compute robotic 
platforms.

Taken together, our findings suggest that lightweight re-
gion-aware frameworks like RASM currently provide the best 
trade-off between efficiency and accuracy in resource-con-
strained settings. Future research should investigate strategies 
related to RASM approaches, emphasizing the use of regional 
channels and a continuously modifying window to minimize 
calculation complexity and thereby lower hardware require-
ments for its further use in applications under the current 
hardware level of robots. As robotics and embedded systems 
increasingly gain access to high-performance GPUs, it will be-
come both feasible and advantageous to deploy these advanced 
models, enabling higher-fidelity visual perception in dynamic 
real-world environments.
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