ijhighschoolresearch.org

[JHSR

B REVIEW ARTICLE

Shadow Removal Based on Deep Learning

Heyuan Fang

Holy Trinity School, 11300 Bayview Avenue, Richmond Hill, ON, L4S 114, Canada; henryfang5908@gmail.com

ABSTRACT: This study evaluates ST-CGAN and RASM for shadow removal using the ISTD and ISTD+ datasets,
comparing their accuracy, efficiency, and generalization. Results show ST-CGAN improves with training, reducing RMSE from
16.39 at epoch 1 to 9.64 at epoch 500, but gains plateau after 100 epochs. Training on ISTD+ lowers RMSE further, yet RASM
significantly outperforms ST-CGAN, achieving an RMSE of 2.53 on ISTD+ compared to ST-CGAN’s projected 5.02 at epoch
10,000. In addition to these two models, recent transformer-based methods such as ShadowFormer and HomoFormer have
demonstrated state-of-the-art results on ISTD+ and SRD benchmarks. These findings highlight that RASM, which leverages a
regional attention mechanism within a transformer framework, achieves superior accuracy and computational efficiency compared
to earlier CNN-based approaches and other state-of-the-art transformer models, establishing it as a practical solution in the field

of shadow removal.
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B Introduction

“Where there is light, there are shadows.”:

Shadows occur when light is obstructed by objects—a natural
and unavoidable phenomenon in human life that only rarely
obstructs vision with any memorable significance. In robotics
applications, however, shadows can cause frequent recognition
errors in tasks such as object detection and tracking. These re-
curring failures, observed for example in competitive robotics
systems, highlight the practical importance of effective shad-
ow removal as a preprocessing step. Because robotic platforms
typically operate under constrained computational resources,
this motivates the exploration of lightweight shadow removal
strategies that balance accuracy with efficiency.!

In the realm of computer vision, shadows present significant
challenges for object detection, tracking, and segmentation.
In finer image modification work, shadows impact light res-
olution—shadowed regions typically have lower luminance
values, leading to altered color intensities and reduced accuracy
in shadowed areas. Consequently, effective shadow removal is
an essential prerequisite for nearly all computer vision applica-
tions and has been a subject of scholarly attention for decades.?

Artificial Intelligence models are poised to perform the
majority of shadow removal in Image processing. While it is
well known that Al models improve over time by incorpo-
rating new data and enhancing their predictive accuracy, the
effectiveness of Al at shadow removal is constrained by several
technical bottlenecks, most notably computational limitations
within real-world constraints.? e.g., Autonomous vehicles will
require exceptionally efficient image processing models to
make sense of fast-moving objects in heterogeneous scenarios
quickly. As of now, Deep Learning has achieved outstanding
success in audio and speech processing, natural language pro-
cessing (NLP), and numerical data analysis.* In recent years,
deep learning-based shadow removal methods have demon-

strated superior performance, primarily due to the availability
of extensive training data.” With the rise in GPU capabilities,
deep neural networks have become a central focus of modern
shadow removal research. These models offer higher accuracy
and efficiency compared to physical-model-based approaches.
However, they also introduce new challenges, primarily the re-
liance on large and diverse datasets. Recent surveys*® provide
a comprehensive overview of shadow removal research from
2017 to 2023, illustrating a clear progression from early CNN-
based methods toward transformer-based architectures*” and
diffusion-based approaches.”® While these models achieve
state-of-the-art results on widely used benchmarks such as
ISTD+ and SRD, they generally require more computation-
al resources than CNN or lightweight designs, making them
less suitable for deployment in resource-constrained environ-
ments. This underscores the importance of evaluating new
lightweight frameworks such as RASM not only against ear-
lier CNN approaches but also within the broader trajectory of
shadow removal research.

Although transformer- and diffusion-based architectures
have recently advanced the field, embedded systems, mo-
bile devices, and autonomous platforms still require methods
that balance accuracy with efficiency. Within this context,
two representative approaches illustrate distinct strategies.
The first is the Stacked Conditional Generative Adversari-
al Network (ST-CGAN), an early CNN-based model that
stacks two CGANs—one for shadow detection and one for
shadow removal—thereby providing an end-to-end pipeline
and demonstrating the benefits of multitask design under
constrained computational budgets. By contrast, the Regional
Attention Shadow Removal Model (RASM) reflects a newer,
lightweight, region-aware paradigm: by enabling adaptive in-
teraction between shadowed and non-shadowed areas, RASM
leverages contextual correlation to restore shadowed content
with improved accuracy while maintaining efficiency.
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While both models aim to improve shadow removal
under limited resources, they embody different design philos-
ophies—ST-CGAN as a canonical CNN-based baseline and
RASM as a lightweight region-aware framework. This study
compares these two approaches to analyze their respective
strengths, limitations, and trade-offs in low-compute scenari-
o0s. The analysis begins with a brief review of shadow removal
challenges, proceeds with a methodological comparison and
experimental evaluation, and concludes with observations on
practical implications.

Shadow Removal: A Scholarly Review:

Prior work has extensively examined shadow removal as a
means to improve downstream computer vision tasks.>’ Tra-
ditional methods often relied on physical illumination and
reflection models,’ treating each pixel individually according to
its lighting conditions. While these approaches can effective-
ly restore images, they tend to be time-consuming and often
require manual user interactions, limiting their practicality
for large-scale or real-time applications. For example, break-
throughs in color detection for light restoration require a level
of image comprehension that would be too costly to program
into models running on home devices.’® Patch-based shad-
ow removal strategies'! align more closely with deep learning
models but would still be too slow for time-critical applica-
tions such as autonomous vehicles. In addition, filtering-based
strategies like bilateral decomposition' were employed to
separate base and detail layers for shadow removal. Arbel and
Hel-Or® argued that shadow removal systems are inherently
skewed towards inefficiency because “Shadows in images are
typically affected by several phenomena in the scene, includ-
ing physical phenomena such as lighting conditions, type and
behavior of shadowed surfaces, occluding objects, etc.,” sug-
gesting profound detail orientation is necessary for complete
artifact removal.

With the rise of deep learning, researchers began to ad-
dress these inefficiencies. Al-assisted shadow removal has
progressed beyond texture recognition and 3D modeling.'**
For instance, ST-CGAN’ provided an end-to-end solution
that simultaneously handled shadow detection and removal
by stacking two conditional GANs, enhancing performance
through mutual reinforcement of both tasks. Other studies em-
phasized context modeling: recent work highlighted concerns
about artifact distortion at the shadow border, and proposed
programs to model the correlation between shadowed and
non-shadowed regions.** To further improve efficiency, sev-
eral works!® focused on increasing the number of training
iterations and reducing computational demand. Wang, Li,
and Yang’ advanced this line of research by introducing a bi-
jective mapping network, coupling the procedures of shadow
removal and shadow generation in a unified parameter-shared
framework. This approach effectively recovered the underly-
ing background contents during the forward shadow removal
process. However, their method still required additional pro-
gramming layers to manage color-rich images, suggesting that
dataset limitations remained unresolved.

Two primary strategies have been developed to overcome
dataset limitations: Dataset Enhancement and Shadow Sim-
ulation Models. Dataset limitations. Dataset Enhancement
involves creating shadow masks (binary images indicating
shadowed and shadow-free areas) and shadow-free patches
(manually edited versions of original images with shadows re-
moved) to expand the dataset. While this method improves
model performance, it requires significant human effort, par-
ticularly during the shadow removal and masking processes.
Shadow Simulation Models artificially generate shadows
on existing images to augment datasets. Though effective
in increasing data volume, the quality of simulated shadows
heavily depends on the diversity of the original dataset. A lack
of variation in shadow patterns limits the effectiveness of this
approach.

More recently, surveys>'” have shown that shadow removal
research from 2017 to 2023 has progressed from early CNN-
based methods toward transformer-based architectures*® and
diffusion-based approaches™. These newer models achieve
state-of-the-art performance on benchmarks such as ISTD+
and SRD, and their global context modeling and generative
priors provide clear advantages in handling complex shadow
patterns and boundary artifacts. While such models demon-
strate clear advantages, this study restricts its scope—due
to experimental constraints and the focus on robotics envi-
ronments under limited computational resources—to two
representative efficiency-oriented methods: ST-CGAN and
RASM.

B Methodology

This study evaluates the effectiveness of two shadow remov-
al models: the Stacked-Conditional Generative Adversarial
Network (ST-CGAN) and the Regional Attention Shadow
Removal Model (RASM). The shadow removal process is di-
vided into two main stages: (1) identifying shadowed regions
and (2) reconstructing and refining these regions using dif-
ferent computational approaches. Each method is assessed
independently to compare its effectiveness in deshadowing.

ST-CGAN is implemented using two separate Condition-
al Generative Adversarial Networks (CGANs) for the two
stages of shadow removal. Python was chosen as the primary
programming language due to its extensive machine learning
libraries and the prevalence of prior implementations in Py-
thon.

As one of the transformers, the shadow removal model,
using the Retinex-based model, ShadowFormer, introduced
multiple channel-spatial attention mechanisms. Using the
Shadow-Interaction Module along with the Shadow-Inter-
action Attention, ShadowFormer could build correlations
between the shadowed and non-shadowed regions and use in-
formation from the shadow-free portion for the restoration of
the image. ShadowFormer used the idea of a window, in which
the transformer would only apply to a specific area (a channel),
to compensate for the large calculation complexity and cost.*

As another development of implementing transformer use
in the task of shadow removal, HomoFormer addressed the
issue of the non-uniformity of the shadow in the given image.
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Non-uniformity imposes a constraint on weight-sharing mod-
els, where they struggle to seek a compromise among regions
of various degenerated degrees. HomoFormer implements a
random shuffle mechanism in its encoding process to homog-
enize the degree of shadow degradation, while a de-shuffle in
the decoder layer restores the image."”

RASM is a lightweight shadow removal model that lever-
ages non-shadow areas to assist in restoring shadowed regions.
By implementing a regional attention module, RASM has a
regional attention module to continuously learning the cor-
relation between adjacent shadow and non-shadow regions.
Differentiating from ShadowFormer and HomoFormer,
RASM took a step back and aggregated information from its
adjacent non-shadowed regions in its regional attention mod-
ule. This approach strikes a balance between model complexity
and performance, optimizing both accuracy and computation-
al efficiency.

To evaluate the performance of these models, we used the
ISTD+ dataset throughout the training and testing phases.
Model effectiveness was measured using Root-Mean-Square
Deviation (RMSE) and PSNR, MAE, and SSIM. Addition-
ally, we varied the number of training epochs to analyze the
relationship between task complexity and image reconstruc-
tion quality.

ISTD Dataset:

The ISTD dataset is a widely used benchmark for shadow
removal tasks, comprising 1,870 image triplets across 135 di-
verse scenes that feature various shadow shapes and lighting
conditions. The dataset is divided into 1,330 triplets for train-
ing and 540 triplets for testing, facilitating model evaluation
and generalization.

Each triplet in the dataset comprises the following compo-
nents:

1. A shadowed image — the original input image containing
natural shadows.

2. A shadow mask — a binary mask delineating the shadowed
regions.

3. A shadow-free image — an image where shadows have
been manually removed following the shadow mask.

The shadow removal in ISTD is performed manually, ensur-
ing precise adherence to the shadow mask. This high-quality
annotation enables Convolutional Neural Networks (CNNs)
and Conditional Generative Adversarial Networks (CGANs)
to effectively learn shadow localization from the shadow mask,
while also identifying differences in luminance, texture, and
resolution between shadowed and shadow-free images. By le-
veraging these structured triplets, the models can be trained to
accurately detect and reconstruct shadowed areas, improving
overall deshadowing performance.

Figure 1: Example of a triplet: Shadow-Free Image, Shadow Mask, and
Original Image.’

Assessing the Accuracy of Models:

We use the root mean square error (RMSE) as the metric
to quantify the discrepancy between the ground-truth shad-
ow-free image and the recovered image, with lower values
indicating higher accuracy or lower distortion.

The RMSE is determined by the equation:'®

Figure 2: Root Mean Square Error (RMSE) Equation.'

We consider two input sets of images, I1 and 12, where each
image consists of n pixels. For each corresponding pixel in the
two images, we compute the difference between their RGB
values, take the average of these differences, and then compute
the square root of this average to determine the overall error.
This results in the Root Mean Squared Error (RMSE), which
quantifies the difference between the two images. The detailed
RMSE calculation is provided in the Appendix.

Methodologies for Shadow Removal: ST-CGAN, Shadow-
Former, HomoFormer, and RASM:

Shadow Removal Using ST-CGAN:

Shadow removal from a single image involves two funda-
mental tasks: shadow detection and shadow removal. The
Stacked Conditional Generative Adversarial Network (ST-
CGAN) is an architecture designed to perform both tasks
jointly, enabling end-to-end learning for improved accuracy
and efficiency.

The ST-CGAN architecture consists of two stacked Condi-
tional Generative Adversarial Networks (CGAN:Ss):

1. Shadow Detection Network — Identifies shadowed re-
gions and generates a shadow mask.

2. Shadow Removal Network — Uses the shadow mask along
with the original image to reconstruct a shadow-free version.

Each CGAN comprises a generator and a discriminator,
working in tandem to enhance the realism and accuracy of the
shadow removal process. The generator aims to produce an
image where shadows are effectively removed, while the dis-
criminator evaluates the authenticity of the generated output,
pushing the model toward higher-quality reconstructions.
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Figure 3: Architecture of the Proposed ST-CGAN: Stacked CGANGs for
Shadow Detection and Removal.’

Shadow Removal Using Shadowformer:
Shadowformer introduces a multiple-scale channel-spatial
attention mechanism within a Transformer framework. This
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design addressed the challenge of other transformer models
of integrating global semantics from deep feature layers with
local details from shallow feature layers.

ShadowFormer started with the Retinex-based shadow
model that handles shadow degradation to allow models to
draw information from non-shadow regions to restore the
shadow region. The restoration process is done through an
encoder-decoder under a single-stage transformer framework
via channel attention to efficiently multiple-stack the hierar-
chical information. Then, the correlation between the shadow
vs non-shadow region is exploited by the Shadow-Interaction
Module with Shadow-Interaction Attention. This allowed
ShadowFormer to address the challenge of colour inconsis-
tency and boundary trace in the restored shadow-free images.

Here, we present a quick overview of the architecture of
ShadowFormer. The process begins with 2 inputs, the shadow
image along with the shadow mask, which is linearly project-
ed, which maps the inputs into a latent feature space. In the
encoder stage, features are processed using a channel attention
model and a standard transformer structure. Then, the features
enter the decoder stage, which mirrors the encoder by using
channel attention modules to reconstruct the spatial details. A
linear projection layer transformation is connected to feature it
back into image space.

NommShadonw Region

Figure 4: Architecture of the Proposed ShadowFormer.*

Shadow Removal Using HomoFormer:

The HomoFormer is an advanced shadow removal mod-
el that leverages a homography-inspired Transformer
architecture to model the relationship between shadow and
non-shadow regions. A foundation based on other transform-
er architectures that would focus on the non-uniform issue of
shadow and as well as the classic self-attention method. The
image shulffle strategy involves upsampling and downsampling
to exchange information between channels and space, while
preventing the spatial arrangements of pixels. At the end, with
an implementation of self-attention to concentrate on region-
al attention, HomoFormer decreased computing complexity
compared to other models.

This model compromises a conflict of previous transformer
models: previous models suffer from either a quadratic in-
crease in complexity as the resolution of the image increases,
or the weight sharing when dealing with non-uniform shadow
degradation. HomoFormer implemented the strategy to ho-
mogenize the non-uniform distribution.

Here, we present a brief overview of the HomoFormer struc-
ture. The process begins with the input project stage, where the
images with shadow and the shadow masks are mapped into a
feature space, which is the core parts: the HomoBlocks inte-
grates Layer Normalization, local self-attention with random
shuffle, and SMLP (standard transformer used). The regional

attention is also implemented in this section to minimize com-

plexity in calculation. During the down and then up-sampling
layers, progressive reduction in the spatial resolution while in-
creasing feature richness is applied with downsampling, while
the upsampling strategy is used to restore the spatial resolution.
This process is able to preserve important details lost during
the traditional encoder-decoder architecture. The features
would lastly pass through an output projection layer to gener-
ate the image.
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Figure 5: Architecture of the Proposed HomoFormer."

Shadow Removal Using RASM:

The Regional Attention Shadow Removal Model (RASM)
is a lightweight yet effective shadow removal approach that
utilizes non-shadow regions to enhance the reconstruction of
shadowed areas. By incorporating regional attention mecha-
nisms, RASM enables context-aware interactions between
shadowed and non-shadowed areas, facilitating a more accu-
rate and natural restoration process.

This model is designed to strike an optimal balance between
computational efficiency and accuracy, ensuring effective shad-
ow removal while maintaining manageable model complexity.
Specifically, the regional attention module could focus on a
specific area of the matrix and therefore avoid being excessive
yet non-informative. In doing so, RASM achieved only 1/4 of
GFLOPs. Through its regionally contextual approach, RASM
enhances the overall quality of shadow-free images while re-
ducing computational overhead.

Here, we present a brief overview of the RASM structure.
On the left side (a) was the process of model and shadow con-
traction area, which employs the Channel Attention Module
(b). After allowing the global information to interact, Channel
Attention enters and eventually concludes in a spatial informa-
tion interaction.
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Figure 6: Demonstration of RASM."

Experiment

For computational resources, we employed Google Colab as
the primary cloud-based virtual machine. The training dura-
tion per epoch ranged from 3,087 to 3,850 seconds on a CPU
and approximately 90.79 to 95.69 seconds on a GPU. How-
ever, GPU availability on Colab was limited, restricting the

DOI: 10.36838/v8i3.63

66



ijhighschoolresearch.org

number of training epochs to well below 500. To supplement
this, we conducted additional tests on a consumer-grade laptop
equipped with an NVIDIA GeForce GTX 1650 GPU with
16GB of memory. The GPU performance on this system was
comparable to that of Colab, making it a reasonable bench-
mark for evaluating model feasibility on consumer hardware.

To systematically evaluate the performance of the shadow
removal models, we conducted a series of experiments under
varying computational environments and training durations.
The experiments were performed using both Google Colab
and a personal computing device, with training durations of
1, 100, and 500 epochs. The effectiveness of the models was
assessed using both qualitative visual analysis and quantitative
evaluation via Root-Mean-Square Deviation (RMSE).

To investigate the potential influence of computational en-
vironments on model performance, we trained the model for
100 epochs using both Google Colab and a personal laptop.
Figure 4 and Figure 5 illustrate six representative examples
from these experiments, where each row corresponds to a
different test sample and each column represents the origi-
nal shadowed image, the ground truth shadow-free image, the
shadow-free image generated by the model, the ground truth
shadow mask, and the shadow mask produced by the model.
A qualitative analysis of the results revealed no significant dif-
ferences between the outputs generated on the two platforms.
Samples that were successfully processed on one platform were
also successfully processed on the other, while failure cases re-
mained consistent across both environments. This observation
was further confirmed by the RMSE values, which indicated
that the personal laptop achieved performance comparable to
the Colab-based model. These findings suggest that the choice
of computational environment does not substantially impact
the model’s performance, validating the robustness of the im-
plementation across different hardware configurations.

B Results and Discussion

Experiment Results:

To assess the impact of training duration on shadow detec-
tion and removal, we compared the results obtained after 1,100
and 500 epochs, all conducted on a personal laptop (Figures
6 and 7). After a single epoch of training, the model exhib-
ited poor generalization, failing to accurately detect shadow
boundaries or reconstruct shadow-free images. The generated
shadow masks were imprecise, and the overall visual quality
of the outputs was suboptimal. This was reflected in a high
RMSE of 16.39, indicating a significant deviation from the
ground truth. These results highlight the necessity of extended
training for the model to learn meaningful representations of
shadow regions and their corresponding shadow-free recon-
structions.

After 100 epochs, the model demonstrated substantial
improvements in both shadow detection and removal. The
generated shadow-free images closely resembled the ground
truth, with only minor imperfections in certain cases. This was
quantitatively supported by a significant reduction in RMSE
to 10.09, indicating enhanced accuracy and improved recon-
struction quality. However, increasing the training duration

turther to 500 epochs yielded only marginal improvements.
While the RMSE decreased slightly from 10.09 to 9.64, the
visual differences were negligible. This suggests that beyond a
certain point, additional training yields diminishing returns, as
the model reaches a plateau in performance where further re-
finement offers minimal perceptible enhancement in shadow
removal quality.

The experimental results lead to three key observations:

* The computational environment does not significantly af-
fect model performance, as both Colab and a personal laptop
produced comparable outputs and RIMISE values.

* Training duration has a substantial impact on model effec-
tiveness, particularly in the early stages, as demonstrated by the
significant improvements between 1 and 100 epochs.

* Beyond 100 epochs, further training yields only incremen-
tal gains, with minimal reductions in RMSE and imperceptible
improvements in visual quality.

NG GEENG & u:-

Figure 7: Completed with Colab, 100 epochs. Here, we demonstrate
3 examples (corresponding to 3 rows) of the output of our program. Each
column, from left to right, corresponds to: the shadowed picture from the
dataset, the shadow-free image from the dataset, the shadow-free image the
code generated, the shadow mask the dataset contains, and the shadow mask
the code generated.

Sk N

Figure 8: Completed on personal laptop, 100 epochs. As a result, between
a personal laptop (Figure 8) vs Colab (Figure 7), we could eyeball and
conclude that there is almost no difference. Therefore, we conclude that the
computational environment does not significantly affect model performance.
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Figure 9: Completed on personal laptop, 1 epoch. Compared with the
personal laptop after 100 epochs (Figure 8), the output after 100 epochs on a
personal laptop (Figure 8) shows a significantly higher quality.
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Figure 10: Completed on personal laptop, 500 epochs. At this point, it is
difficult to eyeball any difference between 100 epochs (Figure 8) and 500
epochs (Figure 10), which means the improvements are gradually decreasing
during this process; however, there could still be a non-obvious improvement.

Effect of Training Epochs on RMSE with ST-CGAN:
Table 1: RMSE was tested with different training epochs using ST-CGAN.

Dataset | epoch=1 epoch=10 epoch=100 | epoch=300 | epoch=500 | epoch=10000

ISTD 16.39 12.83 10.09 9.88 9.64 7.47

Table 1 illustrates the Root Mean Squared Error (RMSE)
values obtained at different training epochs for the ISTD data-
set. RMSE serves as a quantitative measure of deshadowing
effectiveness, where lower values indicate better performance.
The results demonstrate a clear downward trend in RMSE
as the number of training epochs increases, suggesting that
extended training enhances the model's ability to remove shad-
ows.

At epoch 1, the RMSE is 16.39, indicating a relatively high
error in shadow removal. As training progresses to epoch 10,
the RMSE decreases to 12.83, reflecting an improvement in
the model’s capacity to reconstruct shadow-free images. A
more significant reduction is observed at epoch 100, where
the RMSE drops to 10.09, indicating substantial progress in
learning. However, after epoch 100, the reduction in RMSE
becomes less pronounced. At epoch 300, the RMSE is 9.88,
and at epoch 500, it further declines slightly to 9.64. This di-

minishing improvement suggests that the model approaches

its performance plateau, where additional training yields only
marginal enhancements.

For comparison, the ST-CGAN paper’ reports an RMSE
of 7.47 at epoch 10,000, which is significantly lower than the
RMSE values achieved in our experiments. This discrepancy
suggests that extended training beyond 500 epochs may further
enhance the model’s performance.

Effect of Training Epochs on RMSE between Models:

Table 2: RMSE compared with different training epochs between ST-
CGAN and RMSE.

Dataset | Model epoch=1 | epoch=10 [ epoch=100 | epoch=300 | epoch=500 | epoch=10000
ISTD ST- 16.39 12.83 10.09 9.88 9.64 7.47
CGAN
ISTD+ ST- 14.06 9.14 6.97 6.67 6.48 5.02(estimate
CGAN d)
ISTD+ RMSE / 0.858 0.712 0.691 0.675 0.672 0.672
ISTD RMSE

To ensure a fair comparison between the ST-CGAN and
RASM models, we used a consistent dataset for evaluation.
The ST-CGAN model was originally trained and tested on
the ISTD dataset. In contrast, the RASM model was evalu-
ated using the ISTD+ dataset, a refined version of ISTD that
addresses illumination inconsistencies between shadowed and
shadow-free images. To facilitate direct comparison, we recal-
culated the RMSE values for the ST-CGAN model using the
ISTD+ dataset at training epochs 1,10, 100, 300, and 500. The
recalculated RMSE values for ST-CGAN are derived from
our experimental results, while the RIMSE values for RASM
are taken from “Regional Attention for Shadow Removal.”"’

According to Table 2, the comparison between the ST-
CGAN model trained on ISTD vs. ISTD+ reveals notable
differences in shadow removal effectiveness. At the initial
training stage (epoch 1), the RMSE for IST D+ is 14.06, slight-
ly outperforming ISTD’s 16.39, yielding an RIMSE ratio of
0.858. A more pronounced improvement is observed at epoch
10, where the RMSE for ISTD+ decreases to 9.14, compared
to 12.83 for ISTD, resulting in an RMSE ratio of 0.712. How-
ever, beyond epoch 10, the reduction in RMSE for ISTD+
becomes less significant in comparison to ISTD. By epoch 100,
the ratio stabilizes at 0.691, then further decreases to 0.675 at
epoch 300, and 0.672 at epoch 500. This trend suggests that
the RMSE ratio is approaching a steady state. Assuming this
ratio remains consistent up to epoch 10,000, we estimate the
RMSE for ISTD+ at epoch 10,000 to be approximately 5.02.

According to the RASM paper,”” the RMSE of the RASM
model trained on ISTD+ is reported as 2.53, which is signifi-
cantly lower than the projected RMSE of ST-CGAN from our
experiments. This substantial difference indicates that RASM
achieves superior performance in shadow removal compared
to ST-CGAN, particularly in terms of quantitative accuracy.
The results suggest that the regional attention mechanism
employed in RASM is more effective in leveraging contextual
information for shadow reconstruction, leading to a more pre-
cise removal process.
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Comparison with Advanced Transformer Models:

Table 3: The performance of the 3 models mentioned, with measurements of
PSNR, SSIM, and RMSE, using the ISTD+ dataset.®

Method Shadow Region
SSIM RMSE
0.992 5.23
0.993 4.73

0.993 4.41

Non-Shadow Region
PSNR | SSIM RMSE
38.82 | 0.983 2.30
38.75 | 0.984 2.23
39.23 | 0.985 217

All-Region
SSIM
0.971
0.975
0.976

PSNR
39.48
39.49
40.73

PSNR
35.46
35.35
36.16

RMSE
2.78
264
253

ShadowFormer

HomoFormer
RASM

Table 4: The performance of the 3 models mentioned, with measurements

of PSNR, SSIM, and RMSE, using the SRD dataset.®

Shadow Region
SSIM RMSE
0.982 6.14
0.987 4.25
0.988 5.02

Non-Shadow Region
PSNR SSIM RMSE
36.82 0.983 3.54
39.45 0.988 285
38.70 0.992 272

All-Region
SSIM
0.957
0.972
0.976

Method

PSNR

35.55
38.81
37.91

PSNR

3246
| 3537
| 3446

RMSE
4.28
3.33
3.37

ShadowFormer
HomoFormer
RASM

Table 5: The comparison of 4 models mentioned about the number of

parameters and FLOPs.*2

Method #Params. (M) FLOPs (G)
ST-CGAN 29.2 17.9
ShadowFormer 114 63.1
HomoFormer 17.8 38.4
RASM 52 252

Beyond CNN-based methods and lightweight designs such
as RASM, recent studies have introduced transformer and
diffusion architectures that achieve state-of-the-art results on
benchmark datasets. For example, ShadowFormer reports an
RMSE of 2.78, PSNR of 35.46 dB, and SSIM of 0.971 on the
ISTD+ dataset.* Similarly, HomoFormer achieves an RMSE
of 2.64, PSNR of 35.35 dB, and SSIM of 0.975,7 reflecting its
ability to model non-uniform degradation through homoge-
nized attention blocks.

These figures illustrate that transformer-based models
currently surpass CNN approaches in absolute accuracy, par-
ticularly in handling complex shadow boundaries and color
inconsistencies. However, they are also characterized by signifi-
cantly higher computational demands, often requiring multiple
GPUs or extended training times.

RASM has a small number of parameters and low FLOPs,
utilizing a negligible amount of computational resources while
achieving superior performance, demonstrating that RASM
effectively balances model complexity and model performance.

In this study, the experimental comparison is limited to ST-
CGAN and RASM due to hardware constraints typical of
robotics environments, where platforms must balance accuracy
against strict efficiency requirements. Nevertheless, as robotic
systems increasingly adopt more powerful GPUs, the incorpo-
ration of advanced architectures may become both feasible and
advantageous, enabling higher-fidelity perception in dynamic
real-world tasks.

B Conclusion

This study compared ST-CGAN and RASM for shadow
removal, evaluating their effectiveness, computational efficien-
cy, and accuracy using the ISTD and ISTD+ datasets. Our
experiments demonstrated that ST-CGAN benefits from

extended training, with RMSE decreasing from 16.39 at ep-
och 1 to 9.64 at epoch 500 on ISTD. However, beyond 100
epochs, improvements became marginal, indicating a perfor-
mance plateau. Additionally, results confirmed that the choice
of computational environment (Google Colab vs. personal lap-
top) had no significant impact on model performance.

Training ST-CGAN on ISTD+ consistently resulted in
lower RIMISE values, highlighting the role of dataset refine-
ment in improving shadow removal accuracy. However, RASM
significantly outperformed ST-CGAN, achieving an RMSE
of 2.53 on ISTD+, compared to ST-CGAN'’s projected 5.02
at epoch 10,000. This suggests that RASM’s regional attention
mechanism more effectively restores shadow-free images while
maintaining computational efficiency.

Beyond these two models, transformer-based methods
such as ShadowFormer, HomoFormer have recently set new
benchmarks, with RMSE values under 2.8 and SSIM above
0.97. These results indicate that advanced architectures offer
superior absolute accuracy, particularly for complex shadow
boundaries. However, they remain computationally demand-
ing, making them less feasible for current low-compute robotic
platforms.

Taken together, our findings suggest that lightweight re-
gion-aware frameworks like RASM currently provide the best
trade-off between efficiency and accuracy in resource-con-
strained settings. Future research should investigate strategies
related to RASM approaches, emphasizing the use of regional
channels and a continuously modifying window to minimize
calculation complexity and thereby lower hardware require-
ments for its further use in applications under the current
hardware level of robots. As robotics and embedded systems
increasingly gain access to high-performance GPUs, it will be-
come both feasible and advantageous to deploy these advanced
models, enabling higher-fidelity visual perception in dynamic
real-world environments.
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