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ABSTRACT: Breast cancer is the most common cancer in the world, accounting for over 28.2% of all female cancers. However, 
there are still no effective subtype-specific biomarkers to help in diagnosis and more targeted therapies for patients with breast 
cancer. This study uses advanced bioinformatics approaches to identify subtype-specific biomarkers for four molecular subtypes 
and analyse their potential role in treatment processes. To accomplish this objective, differential gene expression analysis (DGE) 
was conducted using the GEO2R (Gene Expression Omnibus) tool to gain different data sets. Using the data, a network was 
constructed in the database STRING, which was then analysed using Cytoscape to identify the topological parameters. Pathway 
analysis was conducted in the Reactome database to determine the top-enriched pathways in which the significant hub genes 
for breast cancer are present. The study identified the top significant genes and hub genes in breast cancer subtypes, assessing 
their ability as biomarkers for more personalised treatments through detailed DGE, network, and pathways analysis. Notably, 
RPS27A emerged as the top significant gene in all the subtypes, with its presence in the EML4 and NUDC in the mitotic spindle 
formation pathway for all 4 subtypes showing its potential for therapy. These findings will enhance understanding of the treatment 
processes of breast cancer and aim for more targeted therapies for different subtypes. 

KEYWORDS: Computational Biology and Bioinformatics, Computational Biomodelling, Cancer Biology Analysis, Network 
Biology, Pathway Analysis.

�   Introduction
Breast cancer (BC), the most commonly diagnosed cancer in 

women worldwide, leads to significant morbidity and mortal-
ity, placing a considerable strain on healthcare systems. Breast 
cancer affects millions of women globally, with approximately 
1.5 million new cases annually, making it a leading cause of 
cancer-related deaths.1 In India, some foundations such as the 
ICGA (Indian Cancer Genome Atlas) are developing tech-
nologies to identify the genetic basis of cancer in the Indian 
population and genetic biomarkers that will improve the rate 
of detection and better-targeted therapies.2

Breast cancer can be classified into several subtypes, which 
are grouped according to the immunohistochemical expression 
of hormone receptors. Luminal A is characterised by the pres-
ence of the ER and PR receptors and the absence of the HER2 
(human epidermal growth factor receptor 2) receptor. Clini-
cally, this subtype grows at a slower rate, has a lower chance 
of relapse, and has a higher survival rate compared to others. 
It presents a positive and faster response to hormone therapy 
in comparison to chemotherapy.3 According to the European 
Society for Medical Oncology, genetic platforms identify the 
preferred treatment for the patient based on the severity, risk 
of relapse, and survival rate.4 Luminal B grows faster and is 
harder to predict than Luminal A, but is also characterised by 
the presence of PR+ and sometimes PR- receptors.5 Hormonal 
therapy, along with chemotherapy, can be beneficial to it. The 
presence of HER2 expression characterises HER2 and caus-
es it to grow at a faster rate compared to the luminal types. 

The prediction has improved since the introduction of more 
HER2-targeted therapies, specifically directed drugs, and a 
high response to chemotherapy. Triple-negative (TNBC) has 
ER-, PR-, and HER2- receptors, which cause it to have highly 
aggressive behaviour, early relapses, a higher proliferation rate, 
changes within the repair genes, and genomic stability. BRCA1 
mutation carriers often have the basal-like subtype, which is 
comparable to TNBC but has different genetic markers.6

By identifying new biomarkers and the genetic basis of the 
disease, its risk and progression can be monitored and better 
understood. Studies have used different bioinformatic ap-
proaches to focus on the molecular heterogeneity of breast 
cancer progression. The National Institute of Biomedical Ge-
nomics (NIBMG) uses biomedical genomics to identify the 
genetic markers associated with the disease. Although various 
biomarkers have been proposed, the severity of breast cancer 
requires more efficient data methods, such as bioinformatics 
approaches that can help bring data from diverse sources to-
gether and offer a more holistic view of the disease. Research 
to identify molecular biomarkers that would be more efficient 
for therapies has been done, which has helped improve the 
progression of the disease.7 By using gene expression profiling 
to uncover intrinsic subtypes, researchers carried out ground-
breaking research on the molecular classification of breast 
cancer, which has since impacted therapeutic approaches.8 To 
gain a better understanding of tumor heterogeneity, this work 
was extended by dividing breast cancer into ten different sub-
groups using integrative genomic analysis.9
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While there has been significant progress in breast cancer 
research, it lacks deeper bioinformatic analysis. These studies 
have relied on genomic data, overlooking the proteomic and 
transcriptomic factors, which are not able to capture tumor 
heterogeneity. Subtype-specific biomarker identification is 
required for deeper analysis. To find new biomarkers and treat-
ment targets, advanced computational techniques are needed 
due to the complexity of breast cancer subtypes. Bioinformatics 
tools such as STRING, CYTOSCAPE, and REACTOME 
will be employed in the research to perform differential gene 
expression analysis, pathway analysis, and network analysis, al-
lowing researchers to explore the disease-related pathways in 
the body and genetic mutations that are related to the disease. 
The use of such bioinformatic tools allows vast datasets to be 
analysed together quickly and efficiently, providing a deeper 
understanding of the progression and the possible treatments. 
Furthermore, research has looked at the mutational signatures 
of breast cancer; however, further research is required to de-
termine the functional implications of these mutations and 
the effect they have on the body’s response to the treatment.10 
Additionally, there is still research on triple-negative breast 
cancer, mainly reliable therapeutic targets and personalised 
treatments for this subtype’s aggressiveness.

However, previous research studies have primarily relied on 
genomic data and ignored the incorporation of proteomic and 
transcriptomic data, which could provide a more in-depth un-
derstanding of the disease. This gap in the research shows that 
a more comprehensive approach with more in-depth biologi-
cal research would be beneficial. For example, whereas genetic 
mutations have been researched in great detail, little is known 
about how they affect the function and patterns of protein 
production. Filling in these gaps will improve our knowledge 
of the illness and result in better methods for diagnosis and 
treatment. Thus, this paper argues that the leverage of bio-
informatic tools that incorporate multi-omics data will help 
identify new biomarkers, creating better therapeutic targets, 
personalised treatments, and earlier detection of the disease. 
This study intends to identify formerly unknown molecular 
patterns that might be useful treatment targets by examining 
a variety of datasets. By enabling more accurate disease char-
acterisation and customised treatments, the discoveries will 
support the expanding field of personalised therapies.

�   Methods
Data Collection:
The gene expression data were retrieved from the NCBI 

GEO platform. Specifically, the subtypes, Luminal A, Lu-
minal B, HER2-Positive, and Triple negative RNA-Seq 
data are extracted for analysis. GSE233242 -‘Tumor circadian 
clock strength influences metastatic potential and predicts patient 
prognosis in Luminal A breast cancer’ investigates the circadian 
clocks in human breast tumors by conducting an expression 
profiling using high-throughput sequencing. GSE214344 - ‘A 
genome-wide cell-free DNA methylation analysis identif ies an 
episignature associated with metastatic luminal B breast cancer.’ 
aims to discover non-invasive biomarkers of the disease using 
an epigenomic approach. GSE52194 - ‘mRNA-sequencing of 

breast cancer subtypes and normal tissue’ uses RNA sequencing 
technology to identify the digital transcriptome. GSE167152 - 
‘Comparative Characterisation of 3D Chromatin Organisation in 
Triple-Negative Breast Cancers [RNA-seq]’ detected CTCF-de-
pendent TNBC-susceptible loss/gain of 3D chromatin 
organisations using expression profiling by high-throughput 
sequencing.

Differential Gene Expression:
Differential gene expression analysis was conducted using 

the GEO2R analysis tool for the RNA-Seq datasets obtained 
for each subtype. GEO2R applies a default normalisation to 
each of the datasets (log2 transformation and quantile normal-
isation for microarray data, variance-stabilising transformation 
for RNA-seq) before it undergoes differential expression anal-
ysis. This allows for fewer technical biases and comparability 
across samples, which increases the reliability of the identified 
DEGs. For the RNA-Seq data of subtype Luminal A, 29 tu-
mor samples and 42 normal samples were assigned as test and 
control groups, respectively. The second type, Luminal B, had 
7 cell-free DNA samples from luminal B patients for the test 
group and 5 normal cell-free DNA samples for the control 
group. The third subtype, TNBC, had 18 triple-negative breast 
cancer cell samples and 2 normal samples, which were assigned 
as the test and control groups, respectively. The last subtype, 
HER2+, had 5 tumor samples and 3 that matched normal 
samples. The raw data were normalised using DESeq2 (Dif-
ferential Expression analysis based on the Negative Binomial 
distribution), and the DEGs (Differentially Expressed Genes) 
were selected based on an adjusted p-value < 0.05 and a fold 
change > 2. To ensure robustness and reduce the possibility 
of background noise, a threshold of FC > 2 was applied to 
identify those genes with significant, biologically meaningful 
expression changes together with an adjusted p-value < 0.05.

Network Construction and Analysis:
A network was constructed using the STRING database by 

identifying gene-gene interactions for the significant genes of 
each subtype. A list of the top 2000 differentially expressed 
genes was used as input to generate a network. The interac-
tions with a high confidence of 0.7 were retained. The network 
was exported as a short tabular text output to visualise in Cy-
toscape to analyse the topological parameters and visualise the 
network. The software provided gene interactions and positive 
topological parameters, which were downloaded for further 
analysis.

Pathway Analysis:
From the topological parameters file created in Cytoscape, 

the degree was set in a descending manner to identify the 
top genes. Pathway enrichment analysis was performed using 
Reactome for the significant DEGs (differentially expressed 
genes) to identify biological pathways significantly affected by 
the differentially expressed genes. The top enriched pathways 
with a p-value < 0.05 were considered significant. The path-
way analysis results adopted from Reactome were then used to 
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search for the top 10 hub genes of the network to check their 
presence in the top enriched pathways.

�   Results and Discussion 
This section represents the results obtained from the bioin-

formatics analysis carried out for different subtypes of breast 
cancer and the top genes and pathways identified to gain in-
sights into personalised treatment approaches. The focus is 
on understanding the specific biological processes, genes, and 
pathways associated with the subtypes of breast cancer. Af-
ter performing DGE analysis for Luminal A - GSE233242, 
13450 significant genes were identified, for Luminal B - 
GSE270967, 2088 significant genes were found, for TNBC 
- GSE167152, 4546 significant genes were identified, and for 
HER2+ - GSE52194, 4575 significant genes were found. The 
overexpressed and underexpressed genes were visualised in the 
form of volcano plots for each subtype, as shown in Figure 1. 
The analysis revealed a total of 22,572 genes associated with 
different subtypes of breast cancer. The key findings also in-
cluded the identification of different genes and pathways that 
play a role in breast cancer.

The network construction for gene interactions of DE 
genes in STRING showed densely connected networks for 
each subtype with high-confidence interactions of >0.7, as 
shown in Figure 2. For Luminal A, the gene interaction net-
work visualised in Cytoscape had 1567 nodes and 2117 edges. 
The network for the Luminal B subtype had 1564 nodes 
and 1844 edges. For TNBC, the network constructed and 
visualised included 1432 nodes and 4122 edges. For the last 
subtype, HER2+, the network had a total of 1398 nodes and 
2059 edges. After performing network analysis in Cytoscape, 
four different topological measures, namely, degree, between-
ness centrality, clustering coefficient, and closeness centrality, 

helped in identifying top hub genes of the network for each 
subtype. The top 10 hub genes identified for each breast cancer 
subtype are listed in Table 1.

The pathway analysis highlighted the top enriched, over-rep-
resented Reactome pathways for each subtype of breast cancer. 
The top 5 enriched pathways for subtype Luminal A were 
Amplification of signal from unattached kinetochores via a 
MAD2 inhibitory signal, Amplification of signal from the 
kinetochores, Chromatin modifying enzymes, Chromatin or-
ganisation, and Cytokine Signalling in the Immune system. 
The top 5 enriched pathways for subtype Luminal B were In-
terleukin-10 signalling, Signalling by Interleukins, Chemokine 
receptors bind chemokines, Peptide ligand-binding receptors, 
and Cytokine Signalling in the Immune system. The top 5 
enriched pathways for subtype HER2+ were EML4 and 
NUDC in mitotic spindle formation, Cytokine Signalling in 
the Immune system, RHO GTPases Activate Formins, Am-
plification of signal from the kinetochores, and Amplification 
of signal from unattached kinetochores via a MAD2 inhibi-
tory signal. The top 5 enriched pathways for subtype TNBC 

Figure 1: Volcano plots for the significant genes identified from differential 
gene expression analysis by GEO2R tool. (A) This plot shows the significant 
DE genes for Luminal A subtype, (B) This plot shows the significant DE 
genes for Luminal B subtype, (C) This plot shows the significant DE genes 
for TNBC subtype, (D) This plot shows the significant DE genes for HER2+ 
subtype. This analysis helped in identifying the differentially expressed genes 
for each subtype of breast cancer as compared to the normal individuals. The 
x-axis shows the fold change of the genes and y-axis represents the adjusted 
p-value.

Figure 2: Networks constructed in STRING and visualized in Cytoscape for 
each of the four subtypes using the significant genes from the DGE analysis. 
(A) Gene-interaction network of Luminal A subtype, (B) Gene-interaction 
network of Luminal B subtype, (C) Gene-interaction network of TNBC 
subtype, (D) Gene-interaction network of HER2+ subtype. Network analysis 
was carried out to identify the most significant genes of each subtype of breast 
cancer.

Table 1: A list of top 10 hub genes for each subtype of breast cancer computed 
on the basis of topological parameters of gene-interaction network.
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can be further experimentally validated for their suitability 
in the clinical setting. Additionally, expanding the dataset to 
include a more diverse population could enhance the general-
izability of the findings.

In order to enhance the therapeutic relevance of these results, 
wet-lab confirmation of the hub genes and pathways would 
be crucial. In order to precisely quantify changes in gene ex-
pression, methods like quantitative polymerase chain reaction 
(qPCR) might be employed to confirm the differential expres-
sion of candidate genes at the mRNA level between samples 
of breast cancer tissue and matched controls. Additionally, 
patient-derived tumor sections may be subjected to immuno-
histochemistry (IHC) to verify the protein-level expression of 
these biomarkers, enabling the spatial localization of the pro-
teins within the tissue microenvironment. To guarantee that 
the discovered biomarkers are not only statistically significant 
but also functionally confirmed for their potential in diagnosis 
and treatment, these techniques would close the gap between 
in silico predictions and biological relevance.

�   Conclusion 
In conclusion, this study identifies the biomarkers for each 

subtype of breast cancer by making use of bioinformatic ap-
proaches such as differential gene expression analysis, network 
analysis, and pathway analysis, which could further be experi-
mentally validated for their potential in personalised treatments. 
RPS27A was identified as a key biomarker across 3 subtypes 
(Luminal A, HER2+, and TNBC), determining its potential 
as a therapeutic target. RPS27A's recurring occurrence across 
several subtypes has biological significance because, despite 
being traditionally thought of as a housekeeping gene neces-
sary for ribosome function, new research indicates it also plays 
oncogenic roles, including promoting proliferation and alter-
ing the ubiquitin–proteasome pathway. Reactome pathways 
showed enrichment of pathways related to mitotic spindle for-
mation, cytokine signalling, chromatin organisation, and cell 
cycle regulation. Hub network genes, HDAC1, IFNG, H3C13, 
and IL1B, were identified as unique biomarkers for each sub-
type, Luminal A, Luminal B, HER2+, and TNBC, respectively. 
Overall, this study paves the way for therapeutic intervention 
of key biomarkers for each specific subtype of breast cancer 
that can help in personalised treatments.
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