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ABSTRACT: The objective of this paper is to look at a stochastic framework for stock price estimation that builds upon specific 
advanced structures used in the financial industry. Specifically, we look at and simulate the Heston Model (with correlated Wiener 
processes with correlation coefficients), and other variants that are considered more accurate with respect to Black-Scholes. Then 
we look at an improved version of this model with jump conditions and simulate it, then look at the Stochastic Alpha Beta Rho 
(SABR) model and the Rough Volatility Model. We finally construct a possible Heston-GARCH-Levy Model with Jump 
Diffusions, which has a Heston Stochastic Volatility, a GARCH for Conditional Heteroskedasticity, as well as Jump Diffusions 
that introduce discontinuities in the price process, with Levy processes for tailed behavior. This combined model is then analyzed 
as a Hybrid Stochastic System specifying assumptions, the function spaces and norms needed, existence and uniqueness proofs, 
handling of hybrid components, regularity and stability bounds, counterexamples when solutions fail, and looking at BIBO 
stability of the system. Our analysis has resulted in a final stochastic model that has passed conditions for uniqueness and existence 
of solutions.  
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�   Introduction
The modeling of financial markets has seen significant ad-

vances, from the seminal Black-Scholes model to stochastic 
volatility frameworks such as the Heston model. However, 
real-world asset prices exhibit characteristics that traditional 
models fail to capture, such as volatility clustering and heavy 
tails. This paper explores the integration of the Heston model 
with GARCH processes and Levy noise to address these lim-
itations. The combined model leverages:

• Stochastic volatility dynamics for market fluctuations
• GARCH processes to account for volatility clustering
• Levy noise to model jumps and heavy-tailed return distri-

butions

�   Background and Past Innovations
1. The Black-Scholes Model: A Starting Point:
The Black-Scholes model, made in 1973, was groundbreak-

ing in financial mathematics, providing a closed-form solution 
for options pricing.1 The stock price S(t) is modeled as a geo-
metric Brownian motion:

dSt = St (rdt + σdWt)
Here, r is the risk-free interest rate, the Greek letter sig-

ma represents the constant volatility, and W(t) is a standard 
Brownian motion. The Black-Scholes model assumes constant 
volatility and a lognormal price distribution, making it ana-
lytically tractable but inconsistent with real market behavior.1 
Price distributions in real-world asset returns are often skewed, 
and thus, a normal assumption is inaccurate for accurate price 
modeling.

2. Limitations of the Black-Scholes Model:
Empirical studies have highlighted major shortcomings in 

the Black-Scholes framework.
• Volatility smiles and skews: Real option prices show 

implied volatilities vary with strike price and maturity, contra-
dicting the constant volatility assumption

• Fat Tails in Return Distributions: Empirical stock returns 
exhibit heavy tails and leptokurtic behavior, unlike the normal 
distribution predicted by Black-Scholes.

• Sudden price jumps: Financial markets experience large 
discontinuous moves like crashes and new shocks, which a pure 
diffusion process fails to capture.

• Volatility clustering: Periods of high volatility tend to be 
followed by more volatility, a missing feature in the constant 
𝜎 assumption.

Below is a sample simulation of the Black-Scholes model 
tested against Apple Stock prices.
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Figure 1: Predicted AAPL prices against Black Scholes. Black-Scholes model 
simulation was tested against AAPL stock prices for the last 2 years, showing 
extreme errors and only a few solutions at the beginning of the simulation. 
Simulation was done with the Monte-Carlo simulation method, and 
significant gaps and high residuals are present between the two simulations.
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Notice the significant gaps between the predicted and actu-
al prices. 1’s comparisons have nearly no solutions, with only 
incredibly small solutions (where intersections occur) hap-
pening at the beginning. Thus, while the figure demonstrates 
that the Black-Scholes model can predict in the short run, it 
is eventually ineffective over a span of weeks. The residuals 
are very large, and thus the model has weak predictions due to 
the reasons mentioned previously. It can, however, be argued 
that this is simply due to computational errors. The simulation 
is utilizing incredible amounts of approximation methods to 
predict stock prices in the following period. It is analogous to 
Euler’s method or linear approximation for ordinary calculus, 
using the tangent line and derivative at step size increments to 
predict future values of solutions to differential equations. As 
we span out in time, approximations capture more inaccura-
cies. However, as we will show in the results section, this error 
does not inhibit the Heston-GARCH-Levy to the extent of 
the Black Scholes errors, meaning the HGL model is indeed 
more mathematically effective.

�   Methods
The Heston model here considers stochastic volatility, add-

ing a dynamic stochastic evolution of variance with a second 
differential equation.2 The continuous Heston variance evo-
lution follows a mean-reverting Cox-Ingersoll Ross process.3

dvt = K (θ - vt)dt + σ √vt dWt
v

This allows volatility to fluctuate randomly over time, 
improving the model’s fit to market data. Here, K is the 
mean-reverting rate, θ is the long-term memory, and the prod-
uct of the square root volatility, and σ gives us the volatility of 
volatility. However, the Heston model still assumes continuous 
price paths, failing to capture market jumps and fat tails.

Thus, to capture market irregularities, we incorporate a Levy 
jump process following a Poisson process, leading to our Sto-
chastic Differential Equation (SDE) for the dynamics of the 
stock price as:

dSt = St (rdt + σdWt + Jt dNt)
The additional J(t) term is this jump process following 

a Poisson distribution N(t) with intensity denoted by the 
Greek letter lambda. J(t) are specifically i.i.d. jump sizes. Levy 
processes further generalize jumps by allowing infinite activ-
ity jumps, such as the Variance Gamma and Normal Inverse 
Gaussian, capturing fat tails and skewness in stock returns 
more effectively than Merton’s model.4

Lastly, we incorporate a GARCH component into our 
model. To better model long-memory effects in volatility, we 
incorporate a GARCH (Generalized Autoregressive Con-
ditional Heteroskedasticity) process that innovates upon the 
general ARCH(1,1) model for volatility clustering.5 The 
GARCH model is defined as follows:

vt+1 = w + αϵt2 + β vt , ϵt = √vtZt

Unlike the Heston model, GARCH models account for 
discrete-time volatility clustering, making them effective in 
high-frequency financial modeling. Notice its recursive behav-

ior, as there is a vt+1 that is dependent on the previous period ϵt  
to predict future volatility fluctuations. Therefore, the Hybrid-
GARCH-Levy Model with Jump Diffusions integrates:

• Heston’s Stochastic volatility (continuous reverting behav-
ior)

• GARCH dynamics (discrete volatility clustering)
• Levy-driven jumps (heavy tails and skewness)
• Poisson processes (sudden price jumps)
Advantages over previous models include capturing vol-

atility clustering (GARCH and Heston components ensure 
time-varying volatility), modeling extreme market moves 
(Levy jumps introduce fat tails and rare events), flexible skew-
ness and kurtosis (the model accommodates asymmetric return 
distributions), and better option pricing fits (the combination 
of stochastic volatility and jumps corrects the implied vola-
tility smile). The Heston-GARCH-Levy model with Jump 
Diffusions represents an improvement over classical mod-
els, allowing for realistic asset price dynamics. By addressing 
volatility clustering, jumps, and heavy tails, it better explains 
market phenomena such as crashes, skewed option prices, and 
persistent volatility shocks. The model is also a hybrid model, 
meaning that there are continuous and discrete dynamics oc-
curring simultaneously. We will prove such a structure exists 
and contains unique solutions in the following section. And so, 
we propose a new system of SDEs to capture real-world mar-
ket dynamics, for which we will prove in the following section:

dSt = μStdt + √vtStdWt + St JtdNt  ,
dvt = K (θ - vt)dt + σ √vt dWt

v

vt = α + βvt-1 + γϵt-1
2 (Note: The v(t+1) was simply rewritten 

as v(t), moving the starting point of the recursion sequence 
back by 1).

• S(t) is the stock price at time t,
• v(t) is the stochastic variance process,
• μ is the drift of the stock price,
• K is the mean-reversion rate of variance
• σ is the volatility of variance
• W(t) and Z(t) are correlated Brownian motions with a cor-

relation coefficient ρ
• J(t) models the jump sizes,
• N(t) is a Poisson process modeling the jump occurrences,
• λ is the intensity of the Poisson process.

�   Theorems for Stability Proofs (Methods) 
A major component of this paper will be to extend results 

from Ordinary Differential Equations to Stochastic Differen-
tial Equations, under appropriate conditions. The key intuition 
is that an SDE is an ODE perturbed by noise, often in the 
form of Brownian motion. In particular, we are concerned with 
four specific ideas:

• Existence and Uniqueness: How ODE theorems extend 
to SDEs

• Stability and Convergence: How solutions behave under 
perturbations

• Gronwall’s Inequality for SDEs: A key inequality that car-
ries over from ODEs
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• Flow properties and Diffeomorphisms: How ODE flow 
maps extend to stochastic settings

Consider a deterministic ODE of the form:

By Picard’s existence and uniqueness theorem, if f(x) is Lip-
schitz continuous, there exists a unique solution x(t) for all t.6 
Now consider the corresponding stochastic differential equa-
tion:

dXt = f (Xt)dt + g (Xt)dWt

Here, W(t) is standard Brownian motion, and g(x(t)) rep-
resents the diffusion terms. Here we have the following 
theorem. If (Lipschitz Condition), | f(x) - f(y)| + | g(x) - g(y)| 
≤C |x-y| and (Linear Growth Condition), there exists a C>0 
such that | f(x)|2 + | g(x)|2 ≤ C (1+|x|)2 ∀x then there exists a 
strong unique solution X(t) to the SDE. 

In terms of proving this, there is a form of Picard It-
eration for ODEs and for SDEs (which is simply an 
extension). For ODEs, we define a sequence as follows:

This converges under the Lipschitz condition. In the case of 
SDEs, we extend the above to SDEs:

The deterministic part follows from Picard iteration for 
ODEs. The stochastic integral exists due to Ito’s Isometry. In 
the case of proving convergence, we use Banach’s fixed-point 
theorem in the space of stochastic processes.7

This guarantees that the stochastic sequence converges, 
proving existence and uniqueness with the difference in iter-
ated guesses being zero.8 Note, for this paper, the capital letter 
“E” will denote taking the expectation or mean of some pro-
cess.

Next, let us consider stability and convergence for SDEs. 
Consider a deterministic stability case with Lyapunov’s meth-
od for ODEs. For the ODE:

dx(t)/dt = f (x(t))

for some c>0, then x(t) is globally stable and converges to an 
equilibrium.

Now consider stochastic stability (Ito’s Lemma for SDEs). 
Suppose we have the SDE:

dXt = f (Xt)dt + g (Xt)dWt

Using Ito’s Lemma, the stochastic analog of Lyapunov's 
condition is:

LV(x) = f (x)V'(x) + 1/2 g2(x)V''(x)
If we can show that LV(x) ≤ -cV(x) then X(t) is stochasti-

cally stable. A bit of background is needed here. In the context 
of SDEs, the operator L is known as the infinitesimal gen-

erator of stochastic processes. It is the key idea in stochastic 
analysis and helps in deriving stability conditions and solving 
PDEs associated with SDEs.9 Two equations in this regard 
would be the well-known Fokker-Planck equation and the 
Hamilton-Jacobi-Bellman (HJB) equation, through which 
the stochastic differential equations can be re-formed into a 
solvable partial differential equation.10

Gronwall’s inequality for SDEs is well known, as it is for 
ODEs. Given:

then y(t) ≤ Cekt

The stochastic version is extremely similar. Suppose we have 
the SDE

dXt = f (Xt)dt + g (Xt)dWt

We apply Ito’s Lemma to the process Y_t = |X_t|^2, which 
gives dYt = CYtdt + g2(Xt)dt

This gives

So Gronwall’s inequality in this case is
E[Xt]2 ≤ Cekt

This is crucial for bounding solutions for ODEs to ensure 
solutions do not explode.

�   Proofs 
In order to look at the existence and uniqueness of solutions 

for this type of Hybrid model, where there are discrete and 
continuous systems of equations at play, we need to understand 
the mathematical frameworks underlying its components. 
Understand that the model combines the following aspects: 
SDEs from the Heston model volatility, GARCH dynam-
ics, which are discrete-time processes modeling conditional 
variance and volatility clustering, Levy processes, for tailed be-
havior, and jump diffusions, which add discontinuities in the 
price dynamics. We will show well-posedness of our model in 
this section, show boundedness and uniqueness of solutions, 
and demonstrate the ways in which we arrive at our final inte-
grated solution of our system of SDEs.

1. Existence and Uniqueness of Solutions:
Let us analyze the variance process for existence and unique-

ness, given the framework laid out in Section 4. The stochastic 
variance process is governed by dvt = K (θ - vt)dt + σ √vtZt

The drift term K (θ - vt) and diffusion term σ√vt satisfy the 
following conditions:

• Local Lipschitz Continuity: The square root volatility 
function is locally Lipschitz for v(t)>0. This ensures that small 
changes in v(t) result in small changes in dv(t).

• Linear Growth Condition: The terms K (θ - vt) and σ√vt 
grow linearly in v(t), satisfying:

 || K (θ - vt)|| + || σ√vt || ≤ C (1+ ||vt||)  for some constant 
C>0.
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4.1. Data Collection and Preprocessing::
We download historical stock price data for the desired pe-

riod. For example, we use Yahoo Finance or other financial 
data sources to retrieve the adjusted closing prices. We then 
calculate logarithmic daily returns as r(t) = ln (S_t / S_{t-1}), 
where S_t is the adjusted closing price at time t. We optimize 
the model parameters with the Mean Squared Error (MSE) 
objective function. It is defined as

		         .
We formulate the stock price dynamics under the model

St+1 = Stexp (( μ - 0.5 vt)Δt + √vtΔtZt + Jumps) ,
where we have variance at time t, and Z_t is Brownian Motion. 
”Jumps” are indeed Poisson-driven.

5.Picard Iteration for Existence and Uniqueness:
In our proof of existence, we use the Picard Iteration Scheme 

to construct the solution to the stochastic hybrid system. This 
method is well-suited due to the following reasons:

• It ensures the existence of a unique fixed-point solution 
under appropriate contraction conditions.

• It aligns naturally with the structure of our SDE.
• It provides a constructive approach to approximating the 

solution, which is beneficial for both theoretical analysis and 
numerical implementation.

We consider a stochastic hybrid system of the form:

where:
• f, g, and h are measurable functions ensuring well-posed-

ness.
• W(t) is a Wiener process.
• N(t) is a Poisson process representing jumps.
• J(t) are i.i.d. jump sizes with finite variance.
Given an initial condition S(0), we seek a solution satisfying:

The Picard Iteration Scheme constructs an approximate se-
quence {St

n} recursively as follows: 

where St
0  = S0 is the initial guess.

To justify why such an iteration is allowed, we will showcase 
a contraction mapping property.

For a Picard iteration to converge, we need to show that the 
mapping:

is a contraction in the normed function space L2(Ω; C([0,T];R))
Consider two iterates St

n and St
n+1 Taking the difference be-

tween two iterates and applying Lipschitz conditions gives us 
the following:			        . We then force T 
to be sufficiently small to achieve a contraction as follows:
.		               . For Some 0< θ< 1 And finally, as it is 
a contraction, by Banach’s Fixed-Point Theorem, (S(t))^n con-
verges to a unique solution. Now, to apply such a concept fully 
to our model, we show that the solution of our system of SDEs, 

2. Stock Price Process:
The stock price process includes a jump component:

dSt = St ( μdt + √vtdWt + JtdNt)
The terms in this equation satisfy:
• Local Lipschitz Continuity: The three dynamic functions 

(jump, stock price, and volatility) are Lipschitz in their respec-
tive domains, ensuring stability in the evolution of S(t).

• Linear Growth Condition: The drift, diffusion, and jump 
terms grow linearly in, satisfying:

|| μSt || + || √vtSt || + || JtSt || ≤ C(1+ || St)
In hindsight, the Lipschitz condition implies that no matter 

what sequence of events is occurring, and despite the position 
of the current real-world price, the stock price dynamics can-
not change unnaturally. Without such a condition, the model 
becomes unstable and can predict changes in the price that are 
nowhere near realistic.

3. Jump Conditions:
The jump component J(t)dN(t) is modeled as a compound 

Poisson process. The following conditions ensure the existence 
and uniqueness of solutions:

• The Poisson process N(t) has finite intensity λ over any 
finite time interval.

• The jump sizes J(t) are modeled to have finite variance, i.e., 
E[ Jt 

2 ] < ∞.
• The jump coefficient J(t) is locally Lipschitz, ensuring the 

stability of the jump term.

4. The Feller Condition, Simulation Parameters, and GARCH 
Constraints:

To ensure volatility remains strictly positive, ensuring stabil-
ity for our model and avoiding negative volatility predictions, 
we require the Feller condition to be satisfied.11

2Kθ ≥ σ2

This condition above guarantees the model avoids any un-
defined behavior at [v(t)]^0.5. The boundary classification 
results for the CIR process are already conventionally dis-
cussed in literature, and the Feller condition is sufficient to 
uphold positive volatility.12 The uniqueness aspect of SDEs is 
usually seen with Lipschitz continuity as well as linear growth 
conditions, and thus validates the use of the Feller condition.

For the GARCH dynamics, which has a discrete time 
variance, we need non-negativity through the following 
parameters: w > 0, α, β ≥ 0, α + β < 1. If α + β < 1 then the pro-
cess is stationary and ergodic, which guarantees a well-defined 
sequence. 

In this paper, the simulation will mainly be based on Monte 
Carlo simulation methods. The parameters for the simulation 
of our stochastic dynamics will run 100-500 stochastic paths, 
then take the median of those paths. We avoid the mean as 
generally done in Monte Carlo simulations for resistance to 
outliers and to help the simulation run time. Additionally, the 
parameters and variables are the same as mentioned in sec-
tion 3. We constrain volatility from Heston’s equations to be 
strictly positive, and we constrain the GARCH parameters as 
discussed above.
DOI: 10.36838/v8i3.85
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discrete-time variance align with the moments of the contin-
uous-time variance process in our system of SDEs. For the 
Discrete-Time Variance, which is from the GARCH equation, 
we have: vt+1 = w + αϵt2 + βvt, where ϵt2 = √vtZt and Z(t) 
follows a standard normal distribution. We compute the ex-
pectation of the GARCH volatility defined by E[vt+1] = w + 
αE[ϵt2] + β E[vt]. Since E[ϵt2] = E[vtZt

2] = vt we have E[vt+1] 
= w + αE[vt] + β E[vt]. It can be shown that the expectation 
of the squared GARCH volatility process has a summation in 
the form of a geometric series, particularly, 		     which
converges to          for α+β < 1 due to the convergence rule 
for a geometric series. It is why we also set the condition 
α+β < 1 for this process. For the Heston variance process, the 
Fokker-Planck equation implies that the expected variance 
satisfies:		        . Of course, the Feller condition stated 
earlier guarantees that this volatility process remains strictly 
positive. To see this visually, the following graph showcases our 
model’s volatility remaining strictly positive over a time interval.

Figure 2 demonstrates that our volatility dynamics of the 
Heston aspect of the model will strictly remain positive. Our 
model is thus steady and will not predict negative volatility, 
which is both unintuitive and causes model breakdowns. The 
Feller condition is then satisfied, and we are in a steady state 
of the model.

In a steady state, E[vt] = θ . And therefore, for our consis-
tency condition to be met, we require                   .

As for the conditions for the jump term J(t), we simply re-
quire that the expectation of 1+J(t) is finite and greater than 0 
almost surely.

�   Result and Discussion 
We now take our three SDEs in the system of stochastic dif-

ferential equations for the Heston-GARCH-Levy, and arrive 
at an equivalent integrated form of the model:

Here is how the product term arrived in this final form: 
When a jump occurs in the process S(t) due to the Poisson 
process, the stock price experiences a discontinuous change. 
The cumulative effect of jumps on the stock price over the 
interval [0, T] is described by	        . With this estab-
lished, and using Monte Carlo simulations, the HGL model 
was tested against AAPL prices, and the error was analyzed as 

which are denoted as X(t) = (S(t), v(t)) with an initial guess of 
the zeroth term of the iterated sequence of X(t) for all t on the 
interval [0, T], converges by estimating the difference between 
consecutive approximations, and showing that such differences 
tend towards 0. Above was the framework that we now apply 
to our H.G.L. model. We define the n-th approximation Xt

n+1 
to be defined recursively as:

. We want to show that the differ-
ence between consecutive approximations

goes to zero. Using Lipschitz conditions, we find an inequal-
ity that follows from Itô Isometry:

			    in which ||Xt
(n+1) - Xt

(n)|| → 0 as  
n → ∞ uniformly in t ∈ [0,T] by Gronwall’s Inequality.

What this means is that if we take any two guesses of pre-
dicted stock prices at the n-th time in the future, the difference 
between the guesses would be zero, meaning those guesses are 
forced to be the same.

Thus, there is a unique solution, or no two guesses that differ 
as the limit goes to infinity in terms of n. And so, we further 
justified the existence of a unique solution to our stochastic 
dynamics.

6. Justif ication for L^2 Normed Space
L^2 provides a reasonable space for our model to work in. 

Firstly, this normed space has Hilbert Space properties, as L^2 
is a Hilbert space, meaning that it has inner products that allow 
for powerful tools like orthogonality, projections, and energy 
estimates. We also have Ito Isometry: Stochastic processes, es-
pecially those involving Brownian motion, are naturally well 
behaved in L^2 due to Ito Isometry, which ensures that ex-
pectations of squared integrals behave nicely. Well-posedness 
and many existence and uniqueness results in SDEs and PDEs 
rely on energy methods in L^2. Below is a demonstration of 
how other normed spaces fail. Let us look at integral control 
for the normed space L^(infinity). Such a norm is given by 

		            .
A key issue is that the integral of f(x) can diverge, making 

standard norm-based convergence arguments in L^2 inappli-
cable.

Counterexample: Consider the sequence of functions g_n 
of x where it is 1 for x on [0,1] and 1/n for x in (1, n]. In this 
normed space, all of these functions satisfy ||gn||L∞ = 1. Thus, 
they do not vanish in the norm as n goes to infinity, which 
prevents the use of limit arguments that are valid in L^2.

7. Moment Matching for the Hybrid Nature of the Model:
In our system of SDEs, we indeed have a discrete and con-

tinuous interplay between the SDEs. The GARCH process 
and the Levy Jumps are discrete events, which are in place 
to capture market irregularities that happen in discrete time 
events. The Heston volatility dynamics are continuous. To 
ensure stability and the model’s accuracy, we need to ensure 
that the hybrid components match with each other in time. 
The first consistency condition requires that the moments of 
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Figure 2: Variance over time of the hybrid model with a threshold for when 
volatility does not remain stable. The figure showcases 5 different probable 
expectations of simulations that are above the 0-volatility line, indicating that 
volatility is strictly positive and the HGL does not blow up.
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well. Following the conventional work on Heston’s model, the 
variables are defined as follows: the drift function will include” 
r,” which is the risk-free interest rate that is derived using Ito’s 
Formula. We have two separate volatility integrals, one follow-
ing an ordinary differential, and the other being with respect 
to Brownian motion. These are, of course, governed by both 
GARCH and Heston dynamics. 

Figure 3 demonstrates an error analysis simulation of the 
Black Scholes model when tested against AAPL stock prices. 
In particular, the error percentages and specific price residu-
als are displayed over time. The error maximizes at around 40 
percent, and the simulation itself has no solutions. The simula-
tion utilized 99 percent confidence intervals, where we are 99 
percent confident that the true expected simulation lies within 
such a range determined by the shaded region.

Figure 4 is an error analysis simulation of our own model, 
the HGL. In this case, we have a maximum error at around 35 
percent, and we once again use 99 percent confidence intervals 
to capture the true expected simulation of our stock price dy-
namics. Note, I say expected as there are many possibilities for 
predictions. The one we choose will be the average or expected 
simulation of our process in the HGL model. When compared 
side-by-side, the HGL model has a significant improvement 
in approximations compared to the Black-Scholes model. The 
Black-Scholes model has a maximum error of 40% deviations, 
while the HGL model has a 35% maximum error. The HGL 
model is also better at tracking price behaviors, as tendencies 

to move in certain directions are mimicked by the HGL. To 
further see this, look at the figure below of a broader simulation 
of the HGL against AAPL prices.

�   Large Deviations in the Poisson Process
Furthermore, in discussing the resulting simulations, we must 

note that the large deviations matter in predicting abnormal 
stock price dips and spikes.13 In section 5.2, it has been not-
ed that the Lipschitz condition prevents the model’s explosive 
growth (of course, with the linear growth condition allowing 
the existence of solutions). However, immense changes in the 
stock price have occurred in the past, and thus, we cannot rule 
out the ability to predict such instances.

The number of jumps in the stock price, defined by N(t), 
follows a Poisson process with:

Using Cramér’s theorem, we estimate P(Nt > λt + δt). We 
define the scaled process as 		  and we use San-
ov’s theorem to give P (Nt > λt + δt) ≈ e-tI(δ) , where the rate 
function is:

For Poisson-distributed N(t), ∧(θ) = λ (eθ - 1), yielding:

What this states, intuitively, is that jump clustering is ex-
ponentially rare but still possible. Thus, we do not rule out a 
possible extreme market crash or market spike. Additionally, if 
J(t) follows a heavy-tailed Lévy distribution, the rate function 
decays more slowly, increasing the likelihood of extreme price 
movements.

As for the GARCH volatility process, to show that volatility 
can also have such extreme predictions, we can showcase the 
large deviations proof by rewriting the GARCH volatility dy-
namics as a discrete sum:                           . The empirical mean 
is then defined as              . The Gärtner-Ellis theorem gives us 
the large deviation rate function as		            where ∧(θ) 
is the moment-generating function for this volatility process. 
For large x-values, P (vt  >x) ≈ e-TI(x). For heavy-tailed innova-
tions (e.g., Student-t distributions), I(x) decays more slowly, 
increasing the probability of extreme volatility. Thus, extreme 
volatility states can persist and thus make risk assessment cru-
cially involved in trading decisions.

To best understand this from a non-mathematical stand-
point, consider that while our model has a low probability of 
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Figure 3: Black Scholes model was tested against AAPL stock prices, and 
percentage and numerical error charts. A maximum percentage error of 40 
percent was shown in this sample simulation.

Figure 5: HGL sample simulation against AAPL prices with enhanced 
jump diffusions. The HGL tends to follow the growth trend of AAPL prices 
in early 2024, and early in the simulation, the drops and spikes and often 
mimicked. In real-world trading, options trading is significantly enhanced 
with our model’s improvements on previous versions of stochastic processes.

Figure 4: HGL model tested against AAPL stock prices, with percentage 
and numerical error charts. The maximum percentage error of the HGL 
occurs at 35%, and several solutions of intersections between simulated and 
actual prices are visually displayed above. A 99% confidence interval was used 
to capture the true expected simulation of all probable outcomes.
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enacting high motion jump dynamics, there still “is” a proba-
bility that is on the tail end of the Poisson. At this level, the 
distribution values that we obtained are incredibly high, and 
will thus affect the price prediction significantly away from the 
drift function with the risk-free interest rate.

Figure 6 showcases an example of how our model applies to 
real-life scenarios. During the recent Trump administration’s 
tariffs, the stock market experienced a period of severe decline. 
The HGL predicted the exact moment at which this fall be-
gins, and thus, a put option would safely put the investor in a 
winning scenario despite extreme market crashes. Notice, the 
predictions within this time frame also match the character-
istic behaviors. When the prices are falling, so does the HGL 
prediction, and when they shift up, so does the HGL. These 
characteristics are particularly powerful in options trading, 
where there are fundamental strategies for buying puts or calls 
that are easy to apply with this model’s behaviors.

And so, the model is successful in incorporating extreme 
market events as part of its predictive capabilities and is also 
stable. The model’s simulations are both characteristically and 
statistically more accurate in price predictions than previous 
versions and thus can be utilized effectively in options and al-
gorithmic trading.

�   Conclusion 
The analysis presented in this paper confirms that the 

stochastic differential equations (SDEs) of the Heston-
GARCH-Lévy model satisfy the local Lipschitz continuity 
and linear growth conditions for the drift, diffusion, and jump 
terms. As a result, the existence and uniqueness of a strong solu-
tion to the model are established based on standard stochastic 
calculus theorems.14 Beyond numerical accuracy, this study pro-
vides a theoretical foundation for the use of specific structures 
in financial modeling. In particular, we justified the Cox-Inger-
soll-Ross (CIR) process for variance modeling, which ensures 
non-negative volatility paths, making it more suitable than 
standard Brownian motion for financial applications, as seen 
in ref [8]. Furthermore, we established the necessity of work-
ing within the L² normed space, providing counterexamples 
that illustrate why alternative normed spaces fail to maintain 
the desired mathematical properties for our SDE framework. 
These justifications strengthen the mathematical rigor behind 
the model’s construction and ensure its reliability for practi-
cal applications. The Heston-GARCH-Lévy model offers a 

more robust and flexible framework for asset price modeling 
by addressing key limitations of traditional models like Heston, 
SABR, Rough Volatility, and Variance Gamma. Unlike these 
models, our approach effectively captures volatility clustering, 
stochastic mean reversion, and discontinuous price jumps, pro-
viding a more comprehensive reflection of financial market 
behaviors. However, despite its accuracy, the computational 
cost remains a challenge. Future work will focus on calibrating 
the model using historical market data and implementing it in 
real time for derivative pricing applications. Additionally, since 
Monte Carlo simulations remain computationally expensive, 
efforts will be made to improve simulation efficiency through 
optimized numerical methods, reduced variance techniques, 
and potentially leveraging high-performance computing for 
faster simulations without compromising accuracy. By refining 
both the theoretical and computational aspects of the model, 
we will aim to enhance its applicability in quantitative finance 
and risk management. Additionally, wavelet simulations will be 
attempted to cover extreme noise in different markets. Future 
work will also incorporate the extension of our model toward 
other markets, such as cryptocurrencies, with more sets of 
SDEs. Lastly, new rigorous proofs of stability will be studied 
for hybrid stochastic systems for markets outside of tech-based 
stocks.
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Figure 6: HGL tested against the S&P 500 for an extreme market crash 
under Trump tariffs. HGL simulation demonstrates mimicking patterns with 
the AAPL stock prices.
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