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B |Introduction 2. Limitations of the Black-Scholes Model:
The modeling of financial markets has seen significant ad- Empirical studies have highlighted major shortcomings in
vances, from the seminal Black-Scholes model to stochastic the Black-Scholes framework.
volatility frameworks such as the Heston model. However, * Volatility smiles and skews: Real option prices show
real-world asset prices exhibit characteristics that traditional implied volatilities vary with strike price and maturity, contra-
models fail to capture, such as volatility clustering and heavy dicting the constant volatility assumption
tails. This paper explores the integration of the Heston model * Fat Tails in Return Distributions: Empirical stock returns
with GARCH processes and Levy noise to address these lim- exhibit heavy tails and leptokurtic behavior, unlike the normal
itations. The combined model leverages: distribution predicted by Black-Scholes.
* Stochastic volatility dynamics for market fluctuations * Sudden price jumps: Financial markets experience large
* GARCH processes to account for volatility clustering discontinuous moves like crashes and new shocks, which a pure
* Levy noise to model jumps and heavy-tailed return distri- diffusion process fails to capture.
butions * Volatility clustering: Periods of high volatility tend to be

followed by more volatility, a missing feature in the constant

B Background and Past Innovations o assumption.

1. The Black-Scholes Model: A Starting Point: Below is a sample simulation of the Black-Scholes model
The Black-Scholes model, made in 1973, was groundbreak- tested against Apple StOCk prices. -
ing in financial mathematics, providing a closed-form solution e
for options pricing.! The stock price S(t) is modeled as a geo- o
metric Brownian motion:
dS, = S, (rdt + cd W)

Here, r is the risk-free interest rate, the Greek letter sig-

A ,,'" '

ma represents the constant volatility, and W(t) is a standard . AW

Brownian motion. The Black-Scholes model assumes constant RV e

volatility and a lognormal price distribution, making it ana- TR mewommommome
lytically tractable but inconsistent with real market behavior.! Figure 1: Predicted AAPL prices against Black Scholes. Black-Scholes model

simulation was tested against AAPL stock prices for the last 2 years, showing

Price distributions in real-world asset returns are often skewed, . o . i
R ) extreme errors and only a few solutions at the beginning of the simulation.

and thus, a2 normal assumption is inaccurate for accurate price Simulation was done with the Monte-Carlo simulation method, and

modeling. significant gaps and high residuals are present between the two simulations.
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Notice the significant gaps between the predicted and actu-
al prices. 1’s comparisons have nearly no solutions, with only
incredibly small solutions (where intersections occur) hap-
pening at the beginning. Thus, while the figure demonstrates
that the Black-Scholes model can predict in the short run, it
is eventually ineffective over a span of weeks. The residuals
are very large, and thus the model has weak predictions due to
the reasons mentioned previously. It can, however, be argued
that this is simply due to computational errors. The simulation
is utilizing incredible amounts of approximation methods to
predict stock prices in the following period. It is analogous to
Euler’s method or linear approximation for ordinary calculus,
using the tangent line and derivative at step size increments to
predict future values of solutions to differential equations. As
we span out in time, approximations capture more inaccura-
cies. However, as we will show in the results section, this error
does not inhibit the Heston-GARCH-Levy to the extent of
the Black Scholes errors, meaning the HGL model is indeed

more mathematically effective.

B Methods

The Heston model here considers stochastic volatility, add-
ing a dynamic stochastic evolution of variance with a second
differential equation.? The continuous Heston variance evo-
lution follows a mean-reverting Cox-Ingersoll Ross process.

dv, =K (0 - v)dt + o Vo, dW,”

This allows volatility to fluctuate randomly over time,
improving the model’s fit to market data. Here, X is the
mean-reverting rate, 0 is the long-term memory, and the prod-
uct of the square root volatility, and o gives us the volatility of
volatility. However, the Heston model still assumes continuous
price paths, failing to capture market jumps and fat tails.

Thus, to capture market irregularities, we incorporate a Levy
jump process following a Poisson process, leading to our Sto-
chastic Differential Equation (SDE) for the dynamics of the
stock price as:

ds, =8, (rdt + cdW, + J,dN,)

The additional J(t) term is this jump process following
a Poisson distribution N(t) with intensity denoted by the
Greek letter lambda. J(t) are specifically i.i.d. jump sizes. Levy
processes further generalize jumps by allowing infinite activ-
ity jumps, such as the Variance Gamma and Normal Inverse
Gaussian, capturing fat tails and skewness in stock returns
more effectively than Merton’s model.*

Lastly, we incorporate a GARCH component into our
model. To better model long-memory effects in volatility, we
incorporate a GARCH (Generalized Autoregressive Con-
ditional Heteroskedasticity) process that innovates upon the
general ARCH(1,1) model for volatility clustering.® The
GARCH model is defined as follows:

_ 2 _
V1 =W+ AES + fu,, €= \/futh

Unlike the Heston model, GARCH models account for
discrete-time volatility clustering, making them effective in
high-frequency financial modeling. Notice its recursive behav-

ior, as there is a v, that is dependent on the previous period €,
to predict future volatility fluctuations. Therefore, the Hybrid-
GARCH-Levy Model with Jump Diffusions integrates:

* Heston’s Stochastic volatility (continuous reverting behav-
ior)

* GARCH dynamics (discrete volatility clustering)

* Levy-driven jumps (heavy tails and skewness)

* Poisson processes (sudden price jumps)

Advantages over previous models include capturing vol-
atility clustering (GARCH and Heston components ensure
time-varying volatility), modeling extreme market moves
(Levy jumps introduce fat tails and rare events), flexible skew-
ness and kurtosis (the model accommodates asymmetric return
distributions), and better option pricing fits (the combination
of stochastic volatility and jumps corrects the implied vola-
tility smile). The Heston-GARCH-Levy model with Jump
Diftusions represents an improvement over classical mod-
els, allowing for realistic asset price dynamics. By addressing
volatility clustering, jumps, and heavy tails, it better explains
market phenomena such as crashes, skewed option prices, and
persistent volatility shocks. The model is also a hybrid model,
meaning that there are continuous and discrete dynamics oc-
curring simultaneously. We will prove such a structure exists
and contains unique solutions in the following section. And so,
we propose a new system of SDEs to capture real-world mar-
ket dynamics, for which we will prove in the following section:

dS, = uS,dt + Vo, 8,dW,+ S, ] AN, s
dv, =K (0 - v)dt + oV, dW,”

v,=a + fv,_q + re,1* (Note: The v(t+1) was simply rewritten
as v(t), moving the starting point of the recursion sequence
back by 1).

* S(t) is the stock price at time t,

* v(t) is the stochastic variance process,

* p is the drift of the stock price,

* X is the mean-reversion rate of variance

* o is the volatility of variance

* W(t) and Z(t) are correlated Brownian motions with a cor-
relation coefficient p

* J(t) models the jump sizes,

* N(t) is a Poisson process modeling the jump occurrences,

* A is the intensity of the Poisson process.

B Theorems for Stability Proofs (Methods)

A major component of this paper will be to extend results
from Ordinary Differential Equations to Stochastic Differen-
tial Equations, under appropriate conditions. The key intuition
is that an SDE is an ODE perturbed by noise, often in the
form of Brownian motion. In particular, we are concerned with
four specific ideas:

* Existence and Uniqueness: How ODE theorems extend
to SDEs

* Stability and Convergence: How solutions behave under
perturbations

* Gronwall’s Inequality for SDEs: A key inequality that car-

ries over from ODEs
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* Flow properties and Diffeomorphisms: How ODE flow
maps extend to stochastic settings

Consider a deterministic ODE of the form:

dxt

a - fx), xo=x

By Picard’s existence and uniqueness theorem, if f(x) is Lip-
schitz continuous, there exists a unique solution x(t) for all t.°
Now consider the corresponding stochastic differential equa-
tion:

dX,= f(X)dt + g (X,)dW,

Here, W(t) is standard Brownian motion, and g(x(t)) rep-
resents the diffusion terms. Here we have the following
theorem. If (Lipschitz Condition), | ffx) - Ay)| + | g(x) - g(¥)|
<C |x-y| and (Linear Growth Condition), there exists a C>0
such that | fx)* + | g(x) < C (1+]x|)* Vx then there exists a
strong unique solution X(t) to the SDE.

In terms of proving this, there is a form of Picard It-
eration for ODEs and for SDEs (which is simply an

extension). For ODEs, we define a sequence as follows:
t
xn+1(t)=x+/ f(xn(s))ds
0

This converges under the Lipschitz condition. In the case of

SDEs, we extend the above to SDEs:
t t
Xn+1(t)= x + / f(xn(s))ds + / 8(X n(s))dWs
0 0

The deterministic part follows from Picard iteration for
ODEs. The stochastic integral exists due to Ito’s Isometry. In
the case of proving convergence, we use Banach’s fixed-point
theorem in the space of stochastic processes.”

E sup 1 X n41 (£)-X () 250

O<t<T

This guarantees that the stochastic sequence converges,
proving existence and uniqueness with the difference in iter-
ated guesses being zero.® Note, for this paper, the capital letter
“E” will denote taking the expectation or mean of some pro-
cess.

Next, let us consider stability and convergence for SDEs.
Consider a deterministic stability case with Lyapunov’s meth-
od for ODEs. For the ODE.:

dx(H/dt = f (x(2))

dv

T < -V (x)
for some c>0, then x(t) is globally stable and converges to an
equilibrium.

Now consider stochastic stability (Ito’s Lemma for SDEs).
Suppose we have the SDE:

dX,= f(X)dt + g (X,)dW,

Using Ito’s Lemma, the stochastic analog of Lyapunov's
condition is:

2V(x) = () V(x) + 1/2 g (x) V'(xx)

If we can show that £V(x) < -c/(x) then X(t) is stochasti-
cally stable. A bit of background is needed here. In the context
of SDEs, the operator £ is known as the infinitesimal gen-

erator of stochastic processes. It is the key idea in stochastic
analysis and helps in deriving stability conditions and solving
PDEs associated with SDEs.’ Two equations in this regard
would be the well-known Fokker-Planck equation and the
Hamilton-Jacobi-Bellman (HJB) equation, through which
the stochastic differential equations can be re-formed into a
solvable partial differential equation.’

Gronwall’s inequality for SDEs is well known, as it is for
ODEs. Given:

t
yi)=<C+ / ky(s)ds
0

then y(#) < Ce
The stochastic version is extremely similar. Suppose we have

the SDE
dX,= f(X)dt + g (X,)dW,

We apply Ito’s Lemma to the process Y_t = |X_t|A2, which
gives dY, = CY,dt + g(X,)dt

This gives
t
Yi<=C+ / kY.ds
0

So Gronwall’s inequality in this case is

E[X]< G

This is crucial for bounding solutions for ODEs to ensure
solutions do not explode.

B Proofs

In order to look at the existence and uniqueness of solutions
for this type of Hybrid model, where there are discrete and
continuous systems of equations at play, we need to understand
the mathematical frameworks underlying its components.
Understand that the model combines the following aspects:
SDEs from the Heston model volatility, GARCH dynam-
ics, which are discrete-time processes modeling conditional
variance and volatility clustering, Levy processes, for tailed be-
havior, and jump diffusions, which add discontinuities in the
price dynamics. We will show well-posedness of our model in
this section, show boundedness and uniqueness of solutions,
and demonstrate the ways in which we arrive at our final inte-
grated solution of our system of SDEs.

1. Existence and Uniqueness of Solutions:

Let us analyze the variance process for existence and unique-
ness, given the framework laid out in Section 4. The stochastic
variance process is governed by dv, = K (0 - v))dt + 6 Vo,Z,

The drift term X (0 - v,) and diffusion term 0\/71[ satisfy the
following conditions:

* Local Lipschitz Continuity: The square root volatility
function is locally Lipschitz for v(t)>0. This ensures that small
changes in v(t) result in small changes in dv(t).

* Linear Growth Condition: The terms X (6 - v,) and oﬂ/fut
grow linearly in v(t), satisfying:

|| K@ -v)|| + || 6Vo, || < C(1+]||v,]|) for some constant
C>0.
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2. Stock Price Process:
The stock price process includes a jump component:

dS,=8,(pd, + Vo,dW,+ J,dN,)

The terms in this equation satisfy:

* Local Lipschitz Continuity: The three dynamic functions
(jump, stock price, and volatility) are Lipschitz in their respec-
tive domains, ensuring stability in the evolution of S(t).

* Linear Growth Condition: The drift, diffusion, and jump

terms grow linearly in, satisfying:
12811+l ‘/‘vtSt” + |8, = €A+ ] S

In hindsight, the Lipschitz condition implies that no matter
what sequence of events is occurring, and despite the position
of the current real-world price, the stock price dynamics can-
not change unnaturally. Without such a condition, the model
becomes unstable and can predict changes in the price that are
nowhere near realistic.

3. Jump Conditions:

The jump component J(t)dN(t) is modeled as a compound
Poisson process. The following conditions ensure the existence
and uniqueness of solutions:

* The Poisson process N(t) has finite intensity A over any
finite time interval.

* The jump sizes J(t) are modeled to have finite variance, i.e.,
B[] < oo

* The jump coefficient J(t) is locally Lipschitz, ensuring the
stability of the jump term.

4. The Feller Condition, Simulation Parameters,and GARCH
Constraints:

To ensure volatility remains strictly positive, ensuring stabil-
ity for our model and avoiding negative volatility predictions,
we require the Feller condition to be satisfied.

2K0 > o&°

This condition above guarantees the model avoids any un-
defined behavior at [v(t)]*0.5. The boundary classification
results for the CIR process are already conventionally dis-
cussed in literature, and the Feller condition is sufficient to
uphold positive volatility."? The uniqueness aspect of SDEs is
usually seen with Lipschitz continuity as well as linear growth
conditions, and thus validates the use of the Feller condition.

For the GARCH dynamics, which has a discrete time
variance, we need non-negativity through the following
parameters: w > 0,a, f >0, a + f < 1.If a + f < 1 then the pro-
cess is stationary and ergodic, which guarantees a well-defined
sequence.

In this paper, the simulation will mainly be based on Monte
Carlo simulation methods. The parameters for the simulation
of our stochastic dynamics will run 100-500 stochastic paths,
then take the median of those paths. We avoid the mean as
generally done in Monte Carlo simulations for resistance to
outliers and to help the simulation run time. Additionally, the
parameters and variables are the same as mentioned in sec-
tion 3. We constrain volatility from Heston’s equations to be
strictly positive, and we constrain the GARCH parameters as
discussed above.

4.1. Data Collection and Preprocessing::

We download historical stock price data for the desired pe-
riod. For example, we use Yahoo Finance or other financial
data sources to retrieve the adjusted closing prices. We then
calculate logarithmic daily returns as r(t) = In (S_t / S_{t-1}),
where S_t is the adjusted closing price at time t. We optimize
the model parameters with the Mean Squared Error (MSE)

objective function. It is defined as

n

MSE — :—lz(éi—si)g'

=1
We formulate the stock price dynamics under the model

8,1 = Sexp (1 -0.5 v)At + \/fv[AtZﬁ Jumps) ,

where we have variance at time t, and Z_t is Brownian Motion.
"Jumps” are indeed Poisson-driven.

5.Picard Iteration for Existence and Uniqueness:

In our proof of existence, we use the Picard Iteration Scheme
to construct the solution to the stochastic hybrid system. This
method is well-suited due to the following reasons:

* It ensures the existence of a unique fixed-point solution
under appropriate contraction conditions.

* It aligns naturally with the structure of our SDE.

* It provides a constructive approach to approximating the
solution, which is beneficial for both theoretical analysis and
numerical implementation.

We consider a stochastic hybrid system of the form:

dS: = f(St,vt,N¢,Jo)dt + g(St,v:, N, T )dW; + h(St,Ut,NI,Jt)dNt‘

where:

* f, g, and h are measurable functions ensuring well-posed-
ness.

* W(t) is a Wiener process.

* N(t) is a Poisson process representing jumps.

* J(t) are i.i.d. jump sizes with finite variance.

Given an initial condition S(0), we seek a solution satisfying:

t t t
St =SO+/ f(su,Uu’Nu,Ju)du“‘/ g(su,vuyNu,Juj)qu"'/ h(Su,Vu;s Nu,Ju)dNy
0 0 0

The Picard Iteration Scheme constructs an approximate se-
quence {8,"} recursively as follows:

t t t
sy =so+/ f(S,'},vu,Nu,Ju)du+/ g(S,'{‘,Uu,N,,,Ju)qu+/ h(Sus Vu, Ny, Ju)dNy
0 0 0

where Sto = § is the initial guess.

To justify why such an iteration is allowed, we will showcase
a contraction mapping property.

For a Picard iteration to converge, we need to show that the

mapping:
t t t
T(S)(t)=s0+/ f(S,l‘,Uu,Nu,Ju)du+/ g(Si",Uu,NuJu)qu+/ h(Su,Vu, Nu,Ju)dNy
0 0 0

is a contraction in the normed function space L*(Q; C([0,7T;R))
Consider two iterates §,” and S;Hl Taking the difference be-
tween two iterates and applying Lipschitz conditions gives us
the following: E(;‘;g]lsx""-S:"1QSCTE:[‘;};]|S:"-SI’"|Z . We then force T
to be sufficiently small to achieve a contraction as follows:
E sup s -sil’s SE‘;ggIIS?-S?"IZ .For Some 0< 0< 1 And finally, as it is
a contraction, by Banach’s Fixed-Point Theorem, (S(t))*n con-
verges to a unique solution. Now, to apply such a concept fully

to our model, we show that the solution of our system of SDEs,
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which are denoted as X(t) = (S(t), v(t)) with an initial guess of
the zeroth term of the iterated sequence of X(t) for all t on the
interval [0, T'], converges by estimating the difference between
consecutive approximations, and showing that such differences
tend towards 0. Above was the framework that we now apply
to our H.G.L. model. We define the n-th approximation X,"*

to be defined recursively as:

xpt=xos [ "b(s x)ds+ Ji ‘o(sxaw, . We want to show that the differ-
ence between consecutive approximations

X -xs [ b (5.X)<b(s. X )1 ds+ Ji 1o (5.X) <0 (5. X0D)1 d;
0 0

goes to zero. Using Lipschitz conditions, we find an inequal-

ity that follows from Ité Isometry:
1x™M0_x™icc [ ax®-x""1ds in which ||X(n+1) X(n)“ — 0 as
n— 00 umformly in t € [0,7] by Gronwall’s Inequality.

What this means is that if we take any two guesses of pre-
dicted stock prices at the n-th time in the future, the difference
between the guesses would be zero, meaning those guesses are
forced to be the same.

Thus, there is a unique solution, or no two guesses that differ
as the limit goes to infinity in terms of n. And so, we further
justified the existence of a unique solution to our stochastic
dynamics.

6. Justification for L"2 Normed Space

LA2 provides a reasonable space for our model to work in.
Firstly, this normed space has Hilbert Space properties, as L2
is a Hilbert space, meaning that it has inner products that allow
for powerful tools like orthogonality, projections, and energy
estimates. We also have Ito Isometry: Stochastic processes, es-
pecially those involving Brownian motion, are naturally well
behaved in LA2 due to Ito Isometry, which ensures that ex-
pectations of squared integrals behave nicely. Well-posedness
and many existence and uniqueness results in SDEs and PDEs
rely on energy methods in LA2. Below is a demonstration of
how other normed spaces fail. Let us look at integral control
for the normed space LA(infinity). Such a norm is given by

If iz suplf(x)l

A key issue is that the integral of f(x) can diverge, making
standard norm-based convergence arguments in L.A2 inappli-
cable.

Counterexample: Consider the sequence of functions g n
of x where it is 1 for x on [0,1] and 1/n for x in (1, n]. In this
normed space, all of these functions satisfy ||g,,||,. = 1. Thus,
they do not vanish in the norm as n goes to infinity, which
prevents the use of limit arguments that are valid in L/A2.

7. Moment Matching for the Hybrid Nature of the Model:

In our system of SDEs, we indeed have a discrete and con-
tinuous interplay between the SDEs. The GARCH process
and the Levy Jumps are discrete events, which are in place
to capture market irregularities that happen in discrete time
events. The Heston volatility dynamics are continuous. To
ensure stability and the model’s accuracy, we need to ensure
that the hybrid components match with each other in time.
The first consistency condition requires that the moments of

discrete-time variance align with the moments of the contin-
uous-time variance process in our system of SDEs. For the
Discrete-Time Variance, which is from the GARCH equation,
we have: v,,; = w + ag/? + fv,, where €} = \/‘U[Zt and Z(t)
follows a standard normal distribution. We compute the ex-
pectation of the GARCH volatility defined by E[v,,1] = w +
aE[e ] + pE[v,]. Since E[¢?] = E[v,Z,*] = v, we have E[v,,4]
= w + aE[v,] + pE[v,]. It can be shown that the expectation
of the squared GARCH volatility process has a summation in
the form of a geometric series, particularly, @ ZZL (a+ A which
converges to ﬁ for a+p < 1 due to the convergence rule
for a geometric series. It is why we also set the condition
a+p < 1 for this process. For the Heston variance process, the
Fokker-Planck equation implies that the expected variance
satisfies: M . Of course, the Feller condition stated
earlier guarantees that this volatility process remains strictly

=x(6 - E[v])

positive. To see this visually, the following graph showcases our
model’s volatility remaining strictly positive over a time interval.

Failure in Heston Dynamics (Violation of Feller Condition)

simulation 1
Simulation 2 f\
— Simulation 3
020 —— Simulation 4
simulation 5
=== Zero Variance (Failure Threshold)

0.15

Variance

0.0 0.2 0.4 0.6 0.8 1.0
Time (Years)

Figure 2: Variance over time of the hybrid model with a threshold for when
volatility does not remain stable. The figure showcases 5 different probable
expectations of simulations that are above the 0-volatility line, indicating that
volatility is strictly positive and the HGL does not blow up.

Figure 2 demonstrates that our volatility dynamics of the
Heston aspect of the model will strictly remain positive. Our
model is thus steady and will not predict negative volatility,
which is both unintuitive and causes model breakdowns. The
Feller condition is then satisfied, and we are in a steady state
of the model.

In a steady state, E[v,] = 0 . And therefore, for our consis-
tency condition to be met, we require €= ﬁ .

As for the conditions for the jump term J(t), we simply re-
quire that the expectation of 1+](t) is finite and greater than O
almost surely.

B Result and Discussion

We now take our three SDEs in the system of stochastic dif-
ferential equations for the Heston-GARCH-Levy, and arrive
at an equivalent integrated form of the model:

1 t t N,
S':SOCXP("_E_/O vsds+/0 \/Ude’>Hi=1(1+]‘f)

Here is how the product term arrived in this final form:
When a jump occurs in the process S(t) due to the Poisson
process, the stock price experiences a discontinuous change.
The cumulative effect of jumps on the stock price over the
interval [0, T] is described by [ Trav, = ¥, . With this estab-
lished, and using Monte Carlo simulations, the HGL model
was tested against AAPL prices, and the error was analyzed as
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well. Following the conventional work on Heston’s model, the
variables are defined as follows: the drift function will include”
r,” which is the risk-free interest rate that is derived using Ito’s
Formula. We have two separate volatility integrals, one follow-
ing an ordinary differential, and the other being with respect
to Brownian motion. These are, of course, governed by both

GARCH and Heston dynamics.

5o

percentage and numerical error charts. A maximum percentage error of 40
percent was shown in this sample simulation.

Figure 3 demonstrates an error analysis simulation of the
Black Scholes model when tested against AAPL stock prices.
In particular, the error percentages and specific price residu-
als are displayed over time. The error maximizes at around 40
percent, and the simulation itself has no solutions. The simula-
tion utilized 99 percent confidence intervals, where we are 99
percent confident that the true expected simulation lies within
such a range determined by the shaded region.

vvvvvv Heston GARCH.Levy with Jumps Model

Figure 4: HGL model tested against AAPL stock prices, with percentage
and numerical error charts. The maximum percentage error of the HGL
occurs at 35%, and several solutions of intersections between simulated and
actual prices are visually displayed above. A 99% confidence interval was used
to capture the true expected simulation of all probable outcomes.

Figure 4 is an error analysis simulation of our own model,
the HGL. In this case, we have a maximum error at around 35
percent, and we once again use 99 percent confidence intervals
to capture the true expected simulation of our stock price dy-
namics. Note, I say expected as there are many possibilities for
predictions. The one we choose will be the average or expected
simulation of our process in the HGL model. When compared
side-by-side, the HGL model has a significant improvement
in approximations compared to the Black-Scholes model. The
Black-Scholes model has a maximum error of 40% deviations,
while the HGL model has a 35% maximum error. The HGL

model is also better at tracking price behaviors, as tendencies

to move in certain directions are mimicked by the HGL. To
further see this, look at the figure below of a broader simulation

of the HGL against AAPL prices.

AAPL Stock Price vs Heston-GARCH-Levy Model with Jump Diffusion

260 — Actual AAPL Prices
—— Heston-GARCH-Levy Model with Jump Diffusions (Best Path)

Stock Price.

180

160

202405 202407 202409 202411 202501 202503

Figure 5: HGL sample simulation against AAPL prices with enhanced
jump diffusions. The HGL tends to follow the growth trend of AAPL prices
in early 2024, and early in the simulation, the drops and spikes and often
mimicked. In real-world trading, options trading is significantly enhanced
with our model’s improvements on previous versions of stochastic processes.

B Large Deviations in the Poisson Process

Furthermore, in discussing the resulting simulations, we must
note that the large deviations matter in predicting abnormal
stock price dips and spikes.”® In section 5.2, it has been not-
ed that the Lipschitz condition prevents the model’s explosive
growth (of course, with the linear growth condition allowing
the existence of solutions). However, immense changes in the
stock price have occurred in the past, and thus, we cannot rule
out the ability to predict such instances.

The number of jumps in the stock price, defined by N(t),
follows a Poisson process with:
Aot

k!

P(N; =k)=

Using Cramér’s theorem, we estimate P(V, > 4, + §,). We
define the scaled process as % =/1+% ™1 and we use San-
ov’s theorem to give P (N, > 4, + §,) =~ ¢®  where the rate
function is: /)= sup[65 - logEe™ ]

For Poisson-distributed N(t), A(0) = A (¢ - 1), yielding:

(%)= 5103(;)-5+11

What this states, intuitively, is that jump clustering is ex-
ponentially rare but still possible. Thus, we do not rule out a
possible extreme market crash or market spike. Additionally, if
J(t) follows a heavy-tailed Lévy distribution, the rate function
decays more slowly, increasing the likelihood of extreme price
movements.

As for the GARCH volatility process, to show that volatility
can also have such extreme predictions, we can showcase the
large deviations proof by rewriting the GARCH volatility dy-
namics as a discrete sum: = X, #(@+a<Z,), The empirical mean
is then defined as % Y., . The Girtner-Ellis theorem gives us
the large deviation rate function as f®=$9l0x = A®] where A(0)
is the moment-generating function for this volatility process.
For large x-values, P (v, >x) = e™®. For heavy-tailed innova-
tions (e.g., Student-t distributions), I(x) decays more slowly,
increasing the probability of extreme volatility. Thus, extreme
volatility states can persist and thus make risk assessment cru-
cially involved in trading decisions.

To best understand this from a non-mathematical stand-
point, consider that while our model has a low probability of
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enacting high motion jump dynamics, there still “is” a proba-
bility that is on the tail end of the Poisson. At this level, the
distribution values that we obtained are incredibly high, and
will thus affect the price prediction significantly away from the
drift function with the risk-free interest rate.

Simulated EGARCH model (David Park) vs Actual S&P 500 (Last 10 Days)

o 2 6 5

3
Trading Days

Figure 6: HGL tested against the S&P 500 for an extreme market crash
under Trump tariffs. HGL simulation demonstrates mimicking patterns with
the AAPL stock prices.

Figure 6 showcases an example of how our model applies to
real-life scenarios. During the recent Trump administration’s
tariffs, the stock market experienced a period of severe decline.
The HGL predicted the exact moment at which this fall be-
gins, and thus, a put option would safely put the investor in a
winning scenario despite extreme market crashes. Notice, the
predictions within this time frame also match the character-
istic behaviors. When the prices are falling, so does the HGL
prediction, and when they shift up, so does the HGL. These
characteristics are particularly powerful in options trading,
where there are fundamental strategies for buying puts or calls
that are easy to apply with this model’s behaviors.

And so, the model is successful in incorporating extreme
market events as part of its predictive capabilities and is also
stable. The model’s simulations are both characteristically and
statistically more accurate in price predictions than previous
versions and thus can be utilized effectively in options and al-
gorithmic trading.

B Conclusion

The analysis presented in this paper confirms that the
stochastic differential equations (SDEs) of the Heston-
GARCH-Lévy model satisfy the local Lipschitz continuity
and linear growth conditions for the drift, diffusion, and jump
terms. As a result, the existence and uniqueness of a strong solu-
tion to the model are established based on standard stochastic
calculus theorems.'* Beyond numerical accuracy, this study pro-
vides a theoretical foundation for the use of specific structures
in financial modeling. In particular, we justified the Cox-Inger-
soll-Ross (CIR) process for variance modeling, which ensures
non-negative volatility paths, making it more suitable than
standard Brownian motion for financial applications, as seen
in ref [8]. Furthermore, we established the necessity of work-
ing within the L? normed space, providing counterexamples
that illustrate why alternative normed spaces fail to maintain
the desired mathematical properties for our SDE framework.
These justifications strengthen the mathematical rigor behind
the model’s construction and ensure its reliability for practi-
cal applications. The Heston-GARCH-Lévy model offers a

more robust and flexible framework for asset price modeling
by addressing key limitations of traditional models like Heston,
SABR, Rough Volatility, and Variance Gamma. Unlike these
models, our approach effectively captures volatility clustering,
stochastic mean reversion, and discontinuous price jumps, pro-
viding a more comprehensive reflection of financial market
behaviors. However, despite its accuracy, the computational
cost remains a challenge. Future work will focus on calibrating
the model using historical market data and implementing it in
real time for derivative pricing applications. Additionally, since
Monte Carlo simulations remain computationally expensive,
efforts will be made to improve simulation efficiency through
optimized numerical methods, reduced variance techniques,
and potentially leveraging high-performance computing for
faster simulations without compromising accuracy. By refining
both the theoretical and computational aspects of the model,
we will aim to enhance its applicability in quantitative finance
and risk management. Additionally, wavelet simulations will be
attempted to cover extreme noise in different markets. Future
work will also incorporate the extension of our model toward
other markets, such as cryptocurrencies, with more sets of
SDEs. Lastly, new rigorous proofs of stability will be studied
for hybrid stochastic systems for markets outside of tech-based
stocks.
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